-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathstring_distant.py
397 lines (362 loc) · 15.4 KB
/
string_distant.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
import time
from Unit import SpindleData
import Levenshtein
import numpy as np
import pandas as pd
from unit.calculate_class_info import CA
import keras.preprocessing as preprocessing
ratio = 0.2 # 用于测试的比例
compression_k = 1 #压缩的k的选择
run_path = "data/mesa" #程序运行的路径,实验结果的保存
dataset_path = "datasets/mesa_dataset/" #实验中原始数据存放位置
# 用于统计相关信息
def calculate_distance(): # 计算距离的评价标准是和样本字符串进行比较(非压缩啊的版本)
# -------------------------------------------基于全部数据的存储比较-------------------------------------------
f = open("data/cases_encoding_str.txt", 'r', encoding="UTF-8")
data_cases = []
for line in f:
data_cases.append(line.split(":")[-1])
print("cases_encoding_str文件读取完成!")
f.close()
data_controls = []
f = open("data/controls_encoding_str.txt", 'r', encoding="UTF-8")
for line in f:
data_controls.append(line.split(":")[-1])
print("controls_encoding_str文件读取完成!")
f.close()
data_cases_top = data_cases
data_controls_top = data_controls # 只是为了保持形式的一致性
# -------------------------------------------优化top选择比较------------------------------------------
# data_cases_top, data_controls_top = get_top_data()
# f = open("data/cases_encoding_str.txt", 'r', encoding="UTF-8")
# data_cases = []
# for line in f:
# data_cases.append(line.split(":")[-1])
# print("cases_encoding_str文件读取完成!")
# f.close()
# data_controls = []
# f = open("data/controls_encoding_str.txt", 'r', encoding="UTF-8")
# for line in f:
# data_controls.append(line.split(":")[-1])
# print("controls_encoding_str文件读取完成!")
# f.close()
# --------------------------------------------选择基本的数据---------------------------------------------
ratio_cases = np.random.randint(0, data_cases.__len__(), int(ratio * data_cases.__len__())) # 选取20%进行测试
ratio_control = np.random.randint(0, data_controls.__len__(), int(ratio * data_controls.__len__()))
print("ratio_cases(count):{}, ratio_controls(count){}".format(ratio_cases.__len__(), ratio_control.__len__()))
m = ratio_cases.__len__()
n = ratio_control.__len__()
Detection_queue = [data_cases[x] for x in ratio_cases] + [data_controls[x] for x in ratio_control]
result_cases_distant = []
result_controls_distant = []
count = 0
for d in Detection_queue: # 记录病人的信息
sum = 0
count += 1
for sample in data_cases_top:
sum += Levenshtein.jaro(d, sample)
result_cases_distant.append(sum / data_cases_top.__len__())
print("正在处理第{}条数据...".format(count))
count = 0
for d in Detection_queue:
sum = 0
count += 1
for sample in data_controls_top:
sum += Levenshtein.jaro(d, sample)
result_controls_distant.append(sum / data_controls_top.__len__())
print("正在处理第{}条数据...".format(count))
result_cases_distant = np.asarray(result_cases_distant)
result_controls_distant = np.asarray(result_controls_distant)
dim = len(data_controls[0])
count_case = 0
count_control = 0
'''Accuracy Precision Recall 的相关计算
precision=tp/(tp+fp)
recall=tp/(tp+fn)
'''
tp=fp=fn=tn=0
for index in range(result_controls_distant.__len__()):
if index < m:
if result_cases_distant[index] > result_controls_distant[index]:
count_case += 1
tp += 1 #预测正确 p->p
else:
fn += 1 #p->n
print("cases:", result_cases_distant[index], result_controls_distant[index])
else:
print("control:", result_cases_distant[index], result_controls_distant[index])
if result_controls_distant[index] > result_cases_distant[index]:
count_control += 1
tn += 1 #n->n
else:
fp += 1
f = open("data/result.csv", 'a', encoding="UTF-8")
result = "%d,%.4f,%.4f,%.4f\n" % (dim, count_case / m, count_control / n, (count_case + count_control) / (m + n))
# print(result)
f.write(result)
f.close()
acc_n, acc_p, accuracy, precision, recall = CA.caculate_apr(tp, fp, fn, tn)
result = "%s,%d,%.4f,%.4f,%.4f,%.4f,%.4f\n" % ("SM-uncompressed", dim, acc_n, acc_p, accuracy, precision, recall)
print("%d,%.4f,%.4f,%.4f,%.4f,%.4f\n" % (dim, acc_n, acc_p, accuracy, precision, recall))
result_save_path = run_path+"/result_all.csv"
fp = open(result_save_path, 'a', encoding="UTF-8")
fp.write(result)
fp.close()
def calculate_distance_compression(): # 计算距离的评价标准是和样本字符串进行比较(压缩啊的版本)
# -------------------------------------------优化top选择比较------------------------------------------
data_cases_top_tmp, data_controls_top_tmp = get_top_data()
data_cases_top = [str_compression(x) for x in data_cases_top_tmp]
data_controls_top = [str_compression(x) for x in data_controls_top_tmp] # 进行数据的压缩
f = open("data/cases_encoding_str.txt", 'r', encoding="UTF-8")
data_cases = []
for line in f:
data_cases.append(str_compression(line.split(":")[-1]))
print("cases_encoding_str文件读取完成!")
f.close()
data_controls = []
f = open("data/controls_encoding_str.txt", 'r', encoding="UTF-8")
for line in f:
data_controls.append(str_compression(line.split(":")[-1]))
print("controls_encoding_str文件读取完成!")
f.close()
# 进行数据的对齐操作
# max_length =int(np.max(np.asarray([len(x) for x in data_cases+data_controls])))
# data_cases_top = same_length_string(data_cases_top, max_length)
# data_controls_top = same_length_string(data_controls_top, max_length)
# data_cases = same_length_string(data_cases, max_length)
# data_controls = same_length_string(data_controls, max_length)
# --------------------------------------------选择基本的数据---------------------------------------------
ratio_cases = np.random.randint(0, data_cases.__len__(), int(ratio * data_cases.__len__())) # 选取20%进行测试
ratio_control = np.random.randint(0, data_controls.__len__(), int(ratio * data_controls.__len__()))
print("ratio_cases(count):{}, ratio_controls(count){}".format(ratio_cases.__len__(), ratio_control.__len__()))
m = ratio_cases.__len__()
n = ratio_control.__len__()
Detection_queue = [data_cases[x] for x in ratio_cases] + [data_controls[x] for x in ratio_control]
result_cases_distant = []
result_controls_distant = []
count = 0
for d in Detection_queue: # 记录病人的信息
sum = 0
count += 1
for sample in data_cases_top:
sum += Levenshtein.jaro(d, sample)
result_cases_distant.append(sum / data_cases_top.__len__())
print("正在处理第{}条数据...".format(count))
count = 0
for d in Detection_queue:
sum = 0
count += 1
for sample in data_controls_top:
sum += Levenshtein.jaro(d, sample)
result_controls_distant.append(sum / data_controls_top.__len__())
print("正在处理第{}条数据...".format(count))
result_cases_distant = np.asarray(result_cases_distant)
result_controls_distant = np.asarray(result_controls_distant)
dim_list = [len(x) for x in data_controls] + [len(x) for x in data_cases]
dim = np.max(np.asarray(dim_list))
count_case = 0
count_control = 0
tp = fp = fn = tn = 0 #计算得到accuracy,precision,recall 的相关数据
for index in range(result_controls_distant.__len__()):
if index < m:
if result_cases_distant[index] > result_controls_distant[index]:
count_case += 1
tp += 1 # 预测正确 p->p
else:
fn += 1 # p->n
print("cases:", result_cases_distant[index], result_controls_distant[index])
else:
print("control:", result_cases_distant[index], result_controls_distant[index])
if result_controls_distant[index] > result_cases_distant[index]:
count_control += 1
tn += 1 # n->n
else:
fp += 1
f = open("data/result.csv", 'a', encoding="UTF-8")
result = "%d,%.4f,%.4f,%.4f\n" % (dim, count_case / m, count_control / n, (count_case + count_control) / (m + n))
# print(result)
f.write(result)
f.close()
print("tp=%d, fp=%d, fn=%d, tn=%d" % (tp, fp, fn, tn))
acc_n, acc_p, accuracy, precision, recall = CA.caculate_apr(tp, fp, fn, tn)
result = "%s,%d,%.4f,%.4f,%.4f,%.4f,%.4f\n" % ("SM-compressed", dim, acc_n, acc_p, accuracy, precision, recall)
result_save_path = run_path+"/result_all.csv"
fp = open(result_save_path, 'a', encoding="UTF-8")
fp.write(result)
fp.close()
return True
def same_length_string(data, k): #将字符串转化为相同的长度,将数据对齐为K
result = []
for d in data :
n = d.__len__()
tem_d = d
if k > n:
tem_d = "0"*(k-n)+d
else:
tem_d = tem_d[-k:]
result.append(tem_d)
return result
def test(flag="total"): # 这里是测试方法
m = 1
n = 3
r = 0.001 # 程序的最优化的选择
starttime = time.time()
for i in range(m):
print("this is %d testing" % (i + 1))
t = r * (i + 1)
print("t=%lf" % t)
path = dataset_path
spindle = SpindleData(step=t, path=path)
# spindle.set_sub_type_coding() #添加了亚型特征
spindle.set_bit_coding()
# print("length:%f" % spindle.mean_length) #显示的是用平均值长度还是使用最大长度
print("length:%f" % spindle.max_length)
spindle.writing_coding_str()
# top_sample()
for j in range(n):
print("this is %d running" % (j))
if flag == "compression": # 如果默认的情况下是直接采用完整的字符串
calculate_distance_compression() # 否则采用压缩的字符串,解决稀疏性
else:
calculate_distance()
endtime = time.time()
print("Running Time:%.2fs" % (endtime - starttime))
return True
# 获取整个样本最好的几个样本,我们认为最大的近似是最优价值的
def top_sample(ratio=0.2):
data_cases = []
names_cases = []
data_controls = []
names_controls = []
path_cases = run_path+"/cases_encoding_str.txt"
f = open(path_cases, 'r', encoding="UTF-8")
for line in f:
data_cases.append(line.split(":")[-1])
names_cases.append(line.split(":")[0])
f.close()
acc_cases = []
for d in data_cases:
sum = 0
for ds in data_cases:
sum += Levenshtein.jaro(d, ds)
result = sum / data_cases.__len__()
acc_cases.append(result)
result = dict(zip(names_cases, acc_cases))
result = sorted(result.items(), key=lambda x: -x[-1])
number = int(data_cases.__len__() * ratio)
# low = int(number*(0.5-ratio/2))
# high = int(number*(0.5+ratio/2)) #用来取中位数
f = open(run_path+"/top_cases.csv", "w", encoding="UTF-8")
first_line = "name,acc\n"
f.write(first_line)
for a in range(number):
result_tmp = "%s,%.4f\n" % (result[a][0], result[a][1])
print(result_tmp)
f.write(result_tmp)
f.close()
path_cases = run_path+"/controls_encoding_str.txt"
f = open(path_cases, 'r', encoding="UTF-8")
for line in f:
data_controls.append(line.split(":")[-1])
names_controls.append(line.split(":")[0])
f.close()
acc_controls = []
for d in data_controls:
sum = 0
for ds in data_controls:
sum += Levenshtein.jaro(d, ds)
result = sum / data_controls.__len__()
acc_controls.append(result)
result = dict(zip(names_controls, acc_controls))
result = sorted(result.items(), key=lambda x: -x[-1])
number = int(data_controls.__len__() * ratio)
# low = int(number * (0.5 - ratio / 2))
# high = int(number * (0.5 + ratio / 2)) # 用来取中位数
f = open(run_path+"/top_controls.csv", "w", encoding="UTF-8")
first_line = "name,acc\n"
f.write(first_line)
for a in range(number):
result_tmp = "%s,%.4f\n" % (result[a][0], result[a][1])
print(result_tmp)
f.write(result_tmp)
f.close()
return True
# 获取由top_sample计算的结果来获取其数据
def get_top_data():
data_cases = []
data_controls = []
path_top_cases = run_path + "/top_cases.csv"
path_top_controls = run_path + "/top_controls.csv"
# 获取较好样本的名称
data = pd.read_csv(path_top_cases, sep=',')
name_top_cases = data["name"].tolist()
data = pd.read_csv(path_top_controls, sep=',')
name_top_controls = data["name"].tolist()
path_str_cases = run_path + "/cases_encoding_str.txt"
path_str_controls = run_path + "/controls_encoding_str.txt"
f = open(path_str_cases, 'r', encoding="UTF-8")
for line in f:
line_data = line.split(":")
name = line_data[0]
if name in name_top_cases:
data_cases.append(line_data[1])
f.close()
f = open(path_str_controls, 'r', encoding="UTF-8")
for line in f:
line_data = line.split(":")
name = line_data[0]
if name in name_top_controls:
data_controls.append(line_data[1])
return data_cases, data_controls
# 主要是为了解决数据的稀疏性问题,指定一个K值,在这个K的基础上进行数据零的压缩,压缩可能会导致长度的不一致
def str_compression(data, k=compression_k):
result = ""
count = 0
for d in data:
if d == "0" and count < k:
count += 1
else:
if d != "0" and count > 0:
result += "0" * count + d
count = 0
else:
count = 0
result += d
return result
# ----------------------------------------------修改K的简单稀疏编码-------------------------------------------
# 简单稀疏编码的策略:1.当一同出现了超过k个0的时候我就手动的添加k-1个0
def new_str_compression(data, k=5):
result = ""
count = 0
for d in data:
if d == "0":
count += 1
else:
if count >= k:
result += "0" * (k - 1) + d
else:
result += "0" * count + d
count = 0
if count >= k:
result += "0"*(k-1)
else:
result += "0"*count
return result
def test_str_compression():
path =run_path + "/cases_encoding_str.txt"
f = open(path, 'r', encoding="UTF-8")
data = f.readline().split(":")[-1]
f.close()
print(data)
print("data:%d" % (data.__len__()))
data_com = new_str_compression(data)
print(data_com)
print("data_com:%d" % (data_com.__len__()))
def run_top_acc(): # 按照特定的规则生成代表性的字符串
# top_sample(ratio=0.2) #这个只需要运行一次就行主要是生成top_cases.csv,top_controls.csv文件
test(flag="compression")
if __name__ == '__main__':
#1 test_str_compression() #用于压缩字符串的测试
run_top_acc() # 生成代表性字符串
#3 test_str = "1001000000100"
#3 print(new_str_compression(test_str, k=5))