-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathstatistics.py
103 lines (76 loc) · 2.71 KB
/
statistics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
import numpy as np
import tensorflow as tf
import matplotlib.pylab as plt
from tensorflow.examples.tutorials.mnist import input_data
import pandas as pd
import os
import glob
import glob
import pandas as pd
from LogisticRegression import get_Data
from matplotlib import pyplot as plt
run_path = "data/mros"
dataset_path = "datasets/mros_dataset"
path_mesa = "datasets/mesa_dataset"
path_mros = "datasets/mros_dataset"
#用于数据的统计
def statistic(dataset_pathmesa, dataset_pathmros):
paths = []
cases_mesa = []
control_mesa = []
data_mesa = [] # cases, control
data_mesa.append(cases_mesa)
data_mesa.append(control_mesa)
cases_mros = []
control_mros = []
data_mros = [] # cases, control
data_mros.append(cases_mros)
data_mros.append(control_mros)
cate_mesa = [(os.path.join(dataset_pathmesa, x)) for x in os.listdir(dataset_pathmesa)]
for index, p in enumerate(cate_mesa):
path_tmp = glob.glob(os.path.join(p, "*csv"))
for t in path_tmp:
d = pd.read_csv(t, sep=",")
if index == 0:
data_mesa[0].append(d)
else:
data_mesa[1].append(d)
print("reading successfully!!!")
cate_mros = [(os.path.join(dataset_pathmros, x)) for x in os.listdir(dataset_pathmros)]
for index,p in enumerate(cate_mros):
path_tmp = glob.glob(os.path.join(p, "*csv"))
for t in path_tmp:
d = pd.read_csv(t, sep=',', skiprows=(0, 1))
if index == 0:
data_mros[0].append(d)
else:
data_mros[1].append(d)
return data_mesa, data_mros
data_mesa, data_mros = statistic(path_mesa, path_mros)
avg_count_mesa = 0
avg_count_mros = 0
sum_mesa = 0
data_mesa = data_mesa[1]
data_mros = data_mros[1]
count_person_mesa = data_mesa.__len__()
count_person_mros = data_mros.__len__()
# count_person_mesa = data_mesa[0].__len__()+data_mesa[1].__len__()
# count_person_mros = data_mros[0].__len__()+data_mros[1].__len__()
sum_time_mesa = 0
for d in data_mesa:
sum_mesa += d.__len__()
for i in range(d.__len__()):
sum_time_mesa += d["STOP"][i] - d["Time_of_night"][i]
avg_count_mesa += sum_mesa / count_person_mesa
avg_duration_time_mesa = sum_time_mesa*3600/sum_mesa
avg_duration_time_mros = 0
sum_time_mros = 0
sum_mros = 0
for d in data_mros:
sum_mros += d.__len__()
for i in range(d.__len__()):
sum_time_mros += d["Duration"][i]
avg_count_mros += sum_mros / count_person_mros
avg_duration_time_mros = sum_time_mros / sum_mros
print("avg_count_mesa=%lf, avg_count_mros=%lf" % (avg_count_mesa, avg_count_mros))
print("mesa duration time=%lf, mros duration time=%lf" % (avg_duration_time_mesa, avg_duration_time_mros))