-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathPreDataProcessing.py
47 lines (37 loc) · 1.37 KB
/
PreDataProcessing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
#!/usr/bin/python
import pandas as pd
import numpy as np
import torchvision
import torch
import torchvision.transforms as transforms
import os
path_labels = "dataset/train_labels.csv"
path_write = "dataset/train_data_labels.txt"
def get_lables(path): #获取训练图片数据的labels
data = pd.read_csv(path, sep=',')
id_list = data['id']
labels_list = data['label']
dict_labels = dict(zip(id_list, labels_list))
return dict_labels #返回的是dict_labels 的映射关系
def write_image_labels(path_write, path_labels): #注意pytorch数据的加载方式,我们需要写成 “****.png 1” 这样的格式
index = 0
dict_labels = get_lables(path_labels)
f = open(path_write, 'w', encoding="UTF-8")
for d in dict_labels.items():
name = '.'.join([d[0], "tif"])
name_pre = "dataset/train"
path_name = os.path.join(name_pre, name) #获得的完整路径
label = d[1]
result = path_name+" "+str(label)+"\n"
f.write(result)
index += 1
if index % 100 == 0:
print("Processing %d data" % index)
f.close()
return True
# id_t = "f38a6374c348f90b587e046aac6079959adf3835"
# data = get_lables(path_label)
# print(data[id_t])
# path_image = "dataset/train"
# read_img(path_image)
write_image_labels(path_write, path_labels)