-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathimage_split.py
44 lines (37 loc) · 1.27 KB
/
image_split.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
from skimage import io,transform
import matplotlib.pyplot as plt
import os
import glob
import os
import tensorflow as tf
import numpy as np
def read_image_all(path):
paths = [] #获取文件夹下所有的图片路径
for root, dir, files in os.walk(path):
for f in files:
pt = os.path.join(root, f)
paths.append(pt)
imgs = []
for index, p in enumerate(paths):
img_tem = io.imread(p)
imgs.append(img_tem)
print("正在读取%s照片" % p)
return imgs #文件下的所有数据信息
def split_image(re_path, save_path, label):
imgs = read_image_all(re_path)
count = 1
for img in imgs:
if label == "good":
img = img[350:1793, 400:2041]
else:
img = img[605:, 470:2111]
img_tem = np.hsplit(img, 3)
for img_t in img_tem:
path = save_path + "/" + str(count) + "_{0}.jpg".format(label)
io.imsave(path, img_t)
print("第%d条图片已经被保存" % count)
count += 1
print("图片处理完成!")
return True
split_image("image_data/good", "image_data/good_split", "good")
split_image("image_data/bad", "image_data/bad_split", "bad")