-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy path21.cpp
217 lines (186 loc) · 4.95 KB
/
21.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
#include <algorithm>
#include <chrono>
#include <iostream>
#include <vector>
using std::string;
using std::swap;
using std::vector;
struct Rule {
vector<vector<vector<char>>> input;
vector<vector<char>> output;
};
vector<vector<char>> flip(const vector<vector<char>> &grid) {
vector<vector<char>> copy = grid;
for (auto &row : copy) {
std::reverse(row.begin(), row.end());
}
return copy;
}
vector<vector<char>> rotate(const vector<vector<char>> &grid) {
vector<vector<char>> copy = grid;
size_t size = grid.size();
// transpose the matrix
for (size_t i = 0; i < size; ++i) {
for (size_t j = i; j < size; ++j) {
swap(copy[i][j], copy[j][i]);
}
}
// reverse each column
for (size_t i = 0; i < size; ++i) {
for (size_t j = 0; j < size / 2; ++j) {
swap(copy[j][i], copy[size - j - 1][i]);
}
}
return copy;
}
vector<Rule> parse_input() {
string line;
vector<Rule> rules;
while (std::getline(std::cin, line)) {
Rule r;
// parse input pattern
auto start = line.begin();
auto eol = std::find(start, line.end(), ' ');
vector<vector<char>> tile;
while (true) {
auto end = std::find(start, eol, '/');
tile.emplace_back(vector<char>(start, end));
if (end == eol) {
break;
}
start = end + 1;
}
r.input.emplace_back(tile);
// parse output pattern
start = eol + 4;
eol = line.end();
while (true) {
auto end = std::find(start, eol, '/');
r.output.emplace_back(vector<char>(start, end));
if (end == eol) {
break;
}
start = end + 1;
}
rules.emplace_back(r);
}
// generate transformations of every tile in rule patterns
for (Rule &rule : rules) {
vector<vector<char>> grid = rule.input[0];
for (int j = 0; j < 3; j++) {
grid = flip(grid);
rule.input.emplace_back(grid);
grid = rotate(grid);
rule.input.emplace_back(grid);
grid = flip(grid);
rule.input.emplace_back(grid);
}
}
return rules;
}
vector<vector<vector<vector<char>>>> split(const vector<vector<char>> &grid,
const size_t n) {
size_t tw = (grid.size() / n);
vector<vector<vector<vector<char>>>> tiles(tw);
for (size_t tr = 0; tr < tw; tr++) {
vector<vector<vector<char>>> tile_row;
tile_row.reserve(tw);
for (size_t tc = 0; tc < tw; tc++) {
vector<vector<char>> tile;
tile.reserve(n);
for (size_t r = 0; r < n; r++) {
vector<char> row;
row.reserve(n);
for (size_t c = 0; c < n; c++) {
row.emplace_back(grid[(tr * n) + r][(tc * n) + c]);
}
tile.emplace_back(row);
}
tile_row.emplace_back(tile);
}
tiles[tr] = tile_row;
}
return tiles;
}
vector<vector<char>> join(const vector<vector<vector<vector<char>>>> &tiles) {
// determine size of grid
size_t sz = tiles.size() * tiles[0][0].size();
vector<vector<char>> grid(sz);
for (size_t i = 0; i < sz; i++) {
grid[i].resize(sz);
}
for (size_t tr = 0; tr < tiles.size(); ++tr) {
for (size_t tc = 0; tc < tiles[tr].size(); ++tc) {
const auto &tile = tiles[tr][tc];
const size_t ts = tile.size();
for (size_t r = 0; r < ts; ++r) {
const size_t gr = tr * ts + r;
for (size_t c = 0; c < ts; ++c) {
grid[gr][tc * ts + c] = tile[r][c];
}
}
}
}
return grid;
}
void match_rule(vector<vector<char>> &tile, const vector<Rule> &rules) {
for (const Rule &rule : rules) {
if (rule.input[0].size() != tile.size()) {
continue;
}
for (const vector<vector<char>> &pattern : rule.input) {
if (tile == pattern) {
tile = rule.output;
return;
}
}
}
}
int main() {
auto tstart = std::chrono::high_resolution_clock::now();
int pt1 = 0;
int pt2 = 0;
vector<vector<char>> grid = {
{'.', '#', '.'},
{'.', '.', '#'},
{'#', '#', '#'},
};
vector<Rule> rules = parse_input();
for (int i = 0; i < 18; i++) {
size_t sq_size = grid.size() % 2 == 0 ? 2 : 3;
auto tiles = split(grid, sq_size);
// go over tiles and look for match
for (auto &tr : tiles) {
for (auto &t : tr) {
match_rule(t, rules);
}
}
grid = join(tiles);
if (i == 4) {
for (const auto &row : grid) {
for (const auto &cell : row) {
if (cell == '#') {
pt1++;
}
}
}
}
}
for (const auto &row : grid) {
for (const auto &cell : row) {
if (cell == '#') {
pt2++;
}
}
}
std::cout << "--- Day 21: Fractal Art ---\n";
std::cout << "Part 1: " << pt1 << "\n";
std::cout << "Part 2: " << pt2 << "\n";
auto tstop = std::chrono::high_resolution_clock::now();
auto duration =
std::chrono::duration_cast<std::chrono::microseconds>(tstop - tstart);
std::cout << "Time: " << (static_cast<double>(duration.count()) / 1000.0)
<< " ms"
<< "\n";
return EXIT_SUCCESS;
}