-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathrun.py
196 lines (170 loc) · 6.31 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
import json
from turtle import st
from lib.config import cfg, update_config
from lib.utils.paf_to_pose import paf_to_pose_cpp
from lib.utils.common import Human, BodyPart, CocoPart, CocoColors, CocoPairsRender, draw_humans
from evaluate.coco_eval import get_outputs, handle_paf_and_heat
from lib.network import im_transform
from lib.network.rtpose_vgg import get_model
from collections import OrderedDict
from torch.autograd import Variable
import torch.nn.functional as F
import torch.nn as nn
import torch
import pylab as plt
import numpy as np
import matplotlib
import argparse
import scipy
import time
import math
import cv2
import os
import re
import sys
import merge
sys.path.append('.')
# from scipy.ndimage.morphology import generate_binary_structure
# from scipy.ndimage.filters import gaussian_filter, maximum_filter
def check_aspect(img_shape):
aspect_ratio = img_shape[0] / img_shape[1]
if aspect_ratio <= 0.4:
return [0, 0.5, 0]
elif 0.4 < aspect_ratio <= 0.8:
return [0.5, 0, 0.5]
elif 1 < aspect_ratio <= 1.5:
return [0, 0.5, 0.5]
elif aspect_ratio > 1.5:
return [0, 0, 0.5]
else:
return [0, 0, 0]
def check_portrait(body_parts, human):
portrait_points = [0, 1, 2, 5, 14, 15, 16, 17]
b_len = len(body_parts)
p_len = len(portrait_points)
ratio = p_len/b_len
match = 0
for b in body_parts:
if b in portrait_points:
match += 1
match_ratio = match/b_len
if match_ratio < 0.5:
return [1, 0, 1]
elif 0.8 < match_ratio:
return [0, 1, 0]
else:
return [0, 0, 0]
def check_laying_standing(body_parts, human, body_box):
lower_body_points = [9, 10, 12, 13]
start = body_box[0]
end = body_box[1]
width = end[0] - start[0]
height = end[1] - start[1]
aspect = width/height
b_len = len(body_parts)
p_len = len(lower_body_points)
if any(x in body_parts for x in lower_body_points):
if 1.5 < aspect:
return [3, 0, 0]
elif 1.2 < aspect <= 1.5:
return [1, 0, 0]
elif 0.8 < aspect <= 1.2:
return [1, 0, 1]
elif 0.4 < aspect <= 0.8:
return [0, 0, 1]
elif aspect <= 0.4:
return [0, 0, 3]
else:
return [0, 0, 0]
else:
return [0, 0, 0]
def write_to_folder_by_pose(human, img_shape, img, img_raw, period, filename):
img_cp = np.copy(img)
img_cp_raw = np.copy(img_raw)
body_parts = list(human.body_parts.keys())
num_body_parts = len(body_parts)
face = human.get_face_box(img_shape[1], img_shape[0])
upper_body = human.get_upper_body_box(img_shape[1], img_shape[0])
body_box = human.get_body_box(img_shape[1], img_shape[0])
if upper_body is None or body_box is None or face is None:
return None
start = body_box[0]
end = body_box[1]
img_cp = cv2.rectangle(img_cp, start, end, (0, 255, 0), 3)
img_cp_raw = cv2.rectangle(img_cp_raw, start, end, (0, 255, 0), 3)
img_cp_raw = img_cp_raw[start[1]:end[1], start[0]:end[0]]
probabilities = [0, 0, 0]
probabilities = [
x + y for (x, y) in zip(probabilities, check_aspect(img_shape))]
probabilities = [
x + y for (x, y) in zip(probabilities, check_portrait(body_parts, human))]
probabilities = [x + y for (x, y) in zip(probabilities,
check_laying_standing(body_parts, human, body_box))]
ix = np.argmax(probabilities)
if ix == 0:
pose = 'laying'
elif ix == 1:
pose = 'portrait'
elif ix == 2:
pose = 'standing'
cv2.imwrite('results/{}/{}/{}'.format(period, pose, filename), img_cp)
cv2.imwrite('results-raw/{}/{}/{}'.format(period,
pose, filename), img_cp_raw)
def arguments():
parser = argparse.ArgumentParser()
parser.add_argument('--cfg', help='experiment configure file name',
default='./experiments/vgg19_368x368_sgd.yaml', type=str)
parser.add_argument('--weight', type=str,
default='pose_model.pth')
parser.add_argument('opts',
help="Modify config options using the command-line",
default=None,
nargs=argparse.REMAINDER)
args = parser.parse_args()
return args
def make_folders(period):
# crete folder if not exist
if not os.path.exists('results/' + period):
os.makedirs('results/' + period)
if not os.path.exists('results-raw/' + period):
os.makedirs('results-raw/' + period)
for p in ['laying', 'portrait', 'standing']:
if not os.path.exists('results/' + period + '/' + p):
os.makedirs('results/' + period + '/' + p)
if not os.path.exists('results-raw/' + period + '/' + p):
os.makedirs('results-raw/' + period + '/' + p)
def main():
args = arguments()
update_config(cfg, args)
model = get_model('vgg19')
model.load_state_dict(torch.load(args.weight))
model = torch.nn.DataParallel(model).cuda()
model.float()
model.eval()
data_folder = 'wikiart'
print('Pose estimation...')
for period in os.listdir(data_folder):
if os.path.isdir(data_folder + '/' + period):
print(period)
for filename in os.listdir(data_folder + '/' + period):
if not (filename.endswith('.jpg') or filename.endswith('.png')):
continue
test_image = data_folder + '/{}/{}'.format(period, filename)
oriImg = cv2.imread(test_image) # B,G,R order
shape_dst = np.min(oriImg.shape[0:2])
img_shape = np.shape(oriImg)
# Get results of original image
with torch.no_grad():
paf, heatmap, im_scale = get_outputs(
oriImg, model, 'rtpose')
humans = paf_to_pose_cpp(heatmap, paf, cfg)
out = draw_humans(oriImg, humans)
black_img = np.zeros_like(oriImg)
outRaw = draw_humans(black_img, humans)
make_folders(period)
for i, human in enumerate(humans):
filename = '{}-{}'.format(i, filename)
write_to_folder_by_pose(
human, img_shape, out, outRaw, period, filename)
if __name__ == '__main__':
main()