-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathdl_sa.py
174 lines (138 loc) · 6.46 KB
/
dl_sa.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
import pandas as pd
import numpy as np
import pickle
from sklearn.model_selection import train_test_split
from sklearn import metrics
from sklearn.metrics import confusion_matrix, classification_report
from preprocessing import TextPreprocessor
from keras.preprocessing.text import Tokenizer
from keras.preprocessing.sequence import pad_sequences
from keras.utils.np_utils import to_categorical
from keras.models import Sequential
from keras.layers import Embedding, LSTM, GRU,Dense, Activation,SpatialDropout1D
from keras.optimizers import SGD, RMSprop, Adagrad
from keras.layers.core import Dense, Dropout, Activation
import os
os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
MAX_NB_WORDS = 100000
EMBEDDING_DIM = 128
batch_size = 256 #batch大小
MAX_SEQUENCE_LENGTH = 50 #pad_sequence最大长度
VALIDATION_SPLIT = 0.1 #验证集比例
import os
path_prefix= os.path.abspath(os.path.join(os.getcwd(), "../"))
print(path_prefix)
pass
def load_dataset(datapath):
data = pd.read_csv(datapath, lineterminator="\n")
data["label"] = data.label.apply(lambda x: 0 if x < 0 else x)
print(data.groupby('label').size().reset_index(name='counts'))
return data
def build_data():
process = TextPreprocessor(stopword_file=os.path.join(path_prefix, "data/stopwords/stopword_normal.txt"))
train_data = load_dataset(os.path.join(path_prefix, "data/comment_trainset_2class.csv"))#.sample(frac=0.1)
print("train shape: ", train_data.shape)
X = train_data.CONTENT.apply(lambda x: process.process_line(x))
y = np.array(train_data.label.tolist())
tokenizer = Tokenizer(num_words=MAX_NB_WORDS)
tokenizer.fit_on_texts(X)
sequences = tokenizer.texts_to_sequences(X)
word_index = tokenizer.word_index
print('Found %s unique tokens.' % len(word_index))
#Found 214909 unique tokens.
data = pad_sequences(sequences, maxlen=MAX_SEQUENCE_LENGTH)
labels = to_categorical(np.asarray(y))
print(labels[:100])
print('Shape of data tensor:', data.shape)
print('Shape of label tensor:', labels.shape)
indices = np.arange(data.shape[0])
np.random.shuffle(indices)
data = data[indices]
labels = labels[indices]
n_validation_samples = int(VALIDATION_SPLIT * data.shape[0])
X_train = data[:-n_validation_samples]
y_train = labels[:-n_validation_samples]
X_test = data[-n_validation_samples:]
y_test = labels[-n_validation_samples:]
return X_train, X_test, y_train, y_test, word_index, sequences, tokenizer
def build_testset(tokenizer):
process = TextPreprocessor(stopword_file=os.path.join(path_prefix,"data/stopwords/stopword_normal.txt"))
valid_data = load_dataset(os.path.join(path_prefix, "data/comment_testset_2class.csv"))#.sample(frac=0.01)
print("valid_data shape: ", valid_data.shape)
X = valid_data.CONTENT.apply(lambda x: process.process_line(x))
y = np.array(valid_data.label.tolist())
sequences = tokenizer.texts_to_sequences(X)
X_val = pad_sequences(sequences, maxlen=MAX_SEQUENCE_LENGTH)
y_val = to_categorical(np.asarray(y))
print('Shape of data tensor:', X_val.shape)
print('Shape of label tensor:', y_val.shape)
return X_val, y_val, y
def build_embedding_matrix(word_index, sequences, embeddings_index={}):
nb_words = min(MAX_NB_WORDS, len(word_index))
#20000
embedding_matrix = np.zeros((nb_words + 1, EMBEDDING_DIM))
for word, i in word_index.items():
if i > MAX_NB_WORDS:
continue
embedding_vector = embeddings_index.get(word)
if embedding_vector is not None:
# words not found in embedding index will be all-zeros.
embedding_matrix[i] = embedding_vector
print(embedding_matrix.shape)
#(20001, 100)
return embedding_matrix, nb_words
def train_model(X_train, y_train, X_test, y_test, n_words, batch_size, n_class=2):
embedding_layer = Embedding(n_words + 1, EMBEDDING_DIM,
# weights=[embedding_matrix],
input_length=MAX_SEQUENCE_LENGTH, dropout=0.2)
print('Build model...')
model = Sequential()
model.add(embedding_layer)
model.add(SpatialDropout1D(0.4))
# model.add(LSTM(64, dropout=0.2, recurrent_dropout=0.2)) # try using a GRU
model.add(GRU(64, dropout=0.2, recurrent_dropout=0.2))
model.add(Dense(n_class, activation='softmax'))
# try using different parameters
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
print(model.summary())
model.fit(X_train, y_train, batch_size=batch_size, epochs=5, validation_data=(X_test, y_test))
score, acc = model.evaluate(X_test, y_test, batch_size=batch_size)
print('Test score:{}, accuracy:{}'.format(score, acc))
return model
def performance(y_true, y_pred):
accuracy = round(metrics.accuracy_score(y_true, y_pred)*100,3)
confusion = confusion_matrix(y_true, y_pred)
report = classification_report(y_true, y_pred)
print("多模型融合预测accuracy:{}".format(accuracy))
print("混淆矩阵:\n{}".format(confusion))
print("预测结果:\n{}".format(report))
return confusion, report
if __name__ == "__main__":
X_train, X_test, y_train, y_test, word_index, sequences, tokenizer = build_data()
print("X_train: {}, X_test: {}".format(X_train.shape, X_test.shape))
embedding_matrix, nb_words = build_embedding_matrix(word_index, sequences,embeddings_index={})
print(embedding_matrix.shape, nb_words)
X_val, y_val, y_true = build_testset(tokenizer)
model = train_model(X_train, y_train, X_test, y_test, nb_words, batch_size)
score, acc = model.evaluate(X_val, y_val,
batch_size=batch_size)
print('val score:', score)
print('val accuracy:', acc)
y_pred = model.predict_classes(X_val)
y_pred_prob = model.predict_proba(X_val)
performance(y_true, y_pred)
# print(y_pred_prob)
from sklearn.metrics import roc_auc_score
auc = roc_auc_score(y_true, y_pred_prob[:,1])
print("model auc score: {b}".format(b=auc))
print("save model.")
model.save(os.path.join(path_prefix, 'output/my_model-gru.h5'))
import pickle
# saving
token_path = os.path.join(path_prefix, 'output/tokenizer-gru.pickle')
with open(token_path, 'wb') as handle:
pickle.dump(tokenizer, handle, protocol=pickle.HIGHEST_PROTOCOL)
# loading
with open(token_path, 'rb') as handle:
tokenizer = pickle.load(handle)