You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
The following publications, in reverse chronological order, have used or cited Fidimag:
4
+
5
+
[32][Thermal Evolution of Skyrmion Formation Mechanism in Chiral Multilayer Films](https://journals.aps.org/prapplied/abstract/10.1103/PhysRevApplied.17.044039) Phys. Rev. Applied 17, 044039 (2022)
6
+
7
+
[31][Mutual conversion between a magnetic Néel hopfion and a Néel toron](https://journals.aps.org/prb/abstract/10.1103/PhysRevB.105.174407) Phys. Rev. B 105, 174407 (2022)
8
+
9
+
[30][Unveiling the emergent traits of chiral spin textures in magnetic multilayers](https://onlinelibrary.wiley.com/doi/abs/10.1002/advs.202103978) Advanced Science Vol 9, Iss 6 (2022)
10
+
11
+
[29][The magnetic genome of two-dimensional van der waals materials](https://pubs.acs.org/doi/full/10.1021/acsnano.1c09150) ACS Nano 16, 5, 6960–7079 (2022)
12
+
13
+
[28][L-shaped electrode design for high-density spin–orbit torque magnetic random access memory with perpendicular shape anisotropy](https://iopscience.iop.org/article/10.1088/1361-6463/abf61d/) J. Phys. D: Appl. Phys. 54 285002 (2021)
[26][Speeding up explicit numerical evaluation methods for micromagnetic simulations using demagnetizing field polynomial extrapolation](https://ieeexplore.ieee.org/document/9737008), IEEE Transactions on Magnetics, Vol 58 Issue 5 (2022)
18
+
19
+
[25][A Review of Modelling in Ferrimagnetic Spintronics](https://journals.jps.jp/doi/full/10.7566/JPSJ.90.081001) J. Phys. Soc. Jpn. 90, 081001 (2021)
20
+
21
+
[24][Topological defect-mediated skyrmion annihilation in three dimensions](https://www.nature.com/articles/s42005-021-00675-4) Communications Physics 4, 175 (2021)
22
+
23
+
[23][Stray Field Calculation for Micromagnetic Simulations Using True Periodic Boundary Conditions](https://doi.org/10.1038/s41598-021-88541-9) Scientific Reports 11, 9202 (2021)
[21][Hybrid FFT algorithm for fast demagnetization field calculations on non-equidistant magnetic layers](https://doi.org/10.1016/j.jmmm.2020.166592)
28
+
Journal of Magnetism and Magnetic Materials, Volume 503, 166592 (2020)
29
+
30
+
[20][Review – Micromagnetic Simulation Using OOMMF and Experimental Investigations on Nano Composite Magnets](https://doi.org/10.1088/1742-6596/1172/1/012070)
31
+
Review – Micromagnetic Simulation Using OOMMF and Experimental Investigations on Nano Composite Magnets, J. Phys.: Conf. Ser. 1172 012070
32
+
33
+
[19][Spin waves in thin films and magnonic crystals with Dzyaloshinskii-Moriya interactions](https://arxiv.org/abs/1903.04288), arxiv:1903.04288 (2019)
34
+
35
+
[18][Tomorrow's Micromagnetic Simulations](https://doi.org/10.1063/1.5093730), Journal of Applied Physics 125, 180901 (2019)
36
+
37
+
[17][Diameter-independent skyrmion Hall angle in the plastic flow regime observed in chiral magnetic
[16][Efficient computation of demagnetising fields for magnetic multilayers using multilayered convolution](https://aip.scitation.org/doi/10.1063/1.5116754), Journal of Applied Physics 126, 103903 (2019)
41
+
42
+
[15][Micromagnetics and spintronics: models and numerical methods](https://link.springer.com/article/10.1140%2Fepjb%2Fe2019-90599-6), Eur. Phys. J. B (2019) 92: 120
43
+
44
+
[14][Nanoscale magnetic skyrmions and target states in confined geometries](https://journals.aps.org/prb/abstract/10.1103/PhysRevB.99.214408), Physical Review B 99, 214408 (2019)
45
+
46
+
[13][Learning Magnetization Dynamics](https://www.sciencedirect.com/science/article/abs/pii/S0304885319307978?via%3Dihub), Journal of Magnetism and Magnetic Materials
47
+
Volume 491, (2019)
48
+
49
+
[12][Computational micromagnetics with Commics](https://doi.org/10.1016/j.cpc.2019.106965), Computer Physics Communications, 248 (2020)
50
+
51
+
[11][Binding a hopfion in a chiral magnet nanodisk](https://journals.aps.org/prb/pdf/10.1103/PhysRevB.98.174437), Physical Review B 98, 174437 (2018)
52
+
53
+
[10][Proposal for a micromagnetic standard problem for materials with Dzyaloshinskii–Moriya interaction](http://iopscience.iop.org/article/10.1088/1367-2630/aaea1c), New Journal of Physics, Volume 20 (2018)
54
+
55
+
[9][Driving chiral domain walls in antiferromagnets using rotating magnetic fields](https://link.aps.org/doi/10.1103/PhysRevB.97.184418) Physical Review B 97, 184418 (2018)
56
+
57
+
[8][Fidimag - A Finite Difference Atomistic and Micromagnetic Simulation Package](http://doi.org/10.5334/jors.223), Journal of Open Research Software, 6(1), p.22. (2018)
58
+
59
+
[7][Topological Spintronics in Confined Geometry](https://escholarship.org/uc/item/8wx626mw), Y. Liu, PhD Thesis, University of California Riverside (2017)
60
+
61
+
[6][Thermal stability and topological protection of skyrmions in nanotracks](https://www.nature.com/articles/s41598-017-03391-8), Scientific Reports 7, 4060 (2017)
62
+
63
+
[5][Current-induced instability of domain walls in cylindrical nanowires](http://iopscience.iop.org/article/10.1088/1361-648X/aa9698/meta), Journal of Physics: Condensed Matter, 30, 1 (2017)
64
+
65
+
[4][Magnonic analog of relativistic Zitterbewegung in an antiferromagnetic spin chain](https://journals.aps.org/prb/abstract/10.1103/PhysRevB.96.024430), Phys. Rev. B 96 024430 (2017)
66
+
67
+
[3][Driving magnetic skyrmions with microwave fields](https://journals.aps.org/prb/abstract/10.1103/PhysRevB.92.020403) Phys. Rev. B 92, 020403 (2015).
68
+
69
+
[2][Microwave-induced dynamic switching of magnetic skyrmion cores in nanodots](https://aip.scitation.org/doi/10.1063/1.4914496) Applied Physics Letters 106, 102401 (2015).
70
+
71
+
[1][Magnon-Driven Domain-Wall Motion with the Dzyaloshinskii-Moriya Interaction](https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.114.087203) Phys. Rev. Lett. 114, 087203 (2015)
Copy file name to clipboardExpand all lines: README.md
+4-69
Original file line number
Diff line number
Diff line change
@@ -17,8 +17,9 @@
17
17
Fidimag solves finite-difference micromagnetic problems and supports atomistic simulations, using Python interface. The interface to both types of simulation is similar.
18
18
19
19
### Features
20
+
* Optimal LLG equation integration using modern [Sundial's v6](https://github.com/LLNL/sundials/) CVODE solver
20
21
* Offers LLG and LLG with spin torque terms (Zhang-Li and Sloncewski)
21
-
* Calculations using the Nudged-Elastic-Band method to compute energy barriers.
22
+
* Calculations using the Geodesic-Nudged-Elastic-Band and String methods to compute energy barriers.
22
23
* Exchange, Zeeman, Demagnetising, Uniaxial Anisotropy energy classes.
23
24
* Parallelised using OpenMP.
24
25
* Easily extensible to add new features.
@@ -71,7 +72,9 @@ The results can be straightforwardly visualised from the outputted VTK files usi
A list tracking publications that cite FIDIMAG can be found in the [Publications](PUBLICATIONS.md) document.
75
78
76
79
77
80
### Attributions
@@ -82,75 +85,7 @@ If you use Fidimag, please cite as:
82
85
83
86
Bisotti, M.-A., Cortés-Ortuño, D., Pepper, R., Wang, W., Beg, M., Kluyver, T. and Fangohr, H., 2018. Fidimag – A Finite Difference Atomistic and Micromagnetic Simulation Package. Journal of Open Research Software, 6(1), p.22. DOI: http://doi.org/10.5334/jors.223
84
87
85
-
### Publications
86
-
87
-
The following publications, in reverse chronological order, have used or cited Fidimag:
88
-
89
-
[28][L-shaped electrode design for high-density spin–orbit torque magnetic random access memory with perpendicular shape anisotropy](https://iopscience.iop.org/article/10.1088/1361-6463/abf61d/) K. Chi, Y. Shi, Z. Li, W. Zhang, Y. Xing, X. Feng, Y. Ma, H. Meng, B. Liu, J. Phys. D: Appl. Phys. 54 285002 (2021)
90
-
91
-
[27][Periodically modulated skyrmion strings in Cu2OSeO3](https://doi.org/10.1038/s41535-021-00373-y) D. M. Burn, R. Brearton, K. J. Ran, S. L. Zhang, G. van der Laan, T. Hesjedal, npj Quantum Materials volume 6, Article number: 73 (2021)
92
-
93
-
[26][Speeding up explicit numerical evaluation methods for micromagnetic simulations using demagnetizing field polynomial extrapolation](https://arxiv.org/abs/2107.06729) S. Lepadatu, arXiv:2107.06729 (2021)
94
-
95
-
[25][A Review of Modelling in Ferrimagnetic Spintronics](https://journals.jps.jp/doi/full/10.7566/JPSJ.90.081001) Joseph Barker, Unai Atxitia, J. Phys. Soc. Jpn. 90, 081001 (2021)
96
-
97
-
[24][Topological defect-mediated skyrmion annihilation in three dimensions](https://www.nature.com/articles/s42005-021-00675-4) M. T. Birch, D. Cortés-Ortuño, N. D. Khanh, S. Seki, A. Štefančič, G. Balakrishnan, Y. Tokura & P. D. Hatton, Communications Physics 4, 175 (2021)
98
-
99
-
[23][Stray Field Calculation for Micromagnetic Simulations Using True Periodic Boundary Conditions](https://doi.org/10.1038/s41598-021-88541-9) F. Bruckner, A. Ducevic, P. Heistracher, C. Abert & D. Suess, Scientific Reports 11, 9202 (2021)
100
-
101
-
[22][Field-free spin–orbit torque perpendicular magnetization switching in ultrathin nanostructures](https://doi.org/10.1038/s41524-020-0347-0)
102
-
M. Dai, J-M. Hu, npj Computational Materials volume
103
-
6, 78 (2020)
104
-
105
-
[21][Hybrid FFT algorithm for fast demagnetization field calculations on non-equidistant magnetic layers](https://doi.org/10.1016/j.jmmm.2020.166592)
106
-
P. Heistracher, F. Bruckner, C. Abert, C. Vogler, D. Suess, Journal of Magnetism and Magnetic Materials
107
-
Volume 503, 166592 (2020)
108
-
109
-
[20][Review – Micromagnetic Simulation Using OOMMF and Experimental Investigations on Nano Composite Magnets](https://doi.org/10.1088/1742-6596/1172/1/012070)
110
-
Review – Micromagnetic Simulation Using OOMMF and Experimental Investigations on Nano Composite Magnets
111
-
S. Sundara Mahalingam, B. V. Manikandan, S. Arockiaraj, J. Phys.: Conf. Ser. 1172 012070
112
-
113
-
[19][Spin waves in thin films and magnonic crystals with Dzyaloshinskii-Moriya interactions](https://arxiv.org/abs/1903.04288)
114
-
R. A. Gallardo, D. Cortés-Ortuño, R. E. Troncoso, P. Landeros, arxiv:1903.04288 (2019)
K. Zeissler, S. Finizio, C. Barton, A. Huxtable, J. Massey, J. Raabe, A. V. Sadovnikov, S. A. Nikitov, R. Brearton, T. Hesjedal, G. van der Laan, M. C. Rosamond, E. H. Linfield, G. Burnell, C. H. Marrows, arXiv:1908.04239 (2019)
122
-
123
-
[16][Efficient computation of demagnetising fields for magnetic multilayers using multilayered convolution](https://aip.scitation.org/doi/10.1063/1.5116754) S. Lepadatu, Journal of Applied Physics 126, 103903 (2019)
124
-
125
-
[15][Micromagnetics and spintronics: models and numerical methods](https://link.springer.com/article/10.1140%2Fepjb%2Fe2019-90599-6) C. Abert, Eur. Phys. J. B (2019) 92: 120
126
-
127
-
[14][Nanoscale magnetic skyrmions and target states in confined geometries](https://journals.aps.org/prb/abstract/10.1103/PhysRevB.99.214408), D. Cortés-Ortuño, N. Romming, M. Beg, K. von Bergmann, A. Kubetzka, O. Hovorka, H. Fangohr, R. Wiesendanger, Physical Review B 99, 214408 (2019)
128
-
129
-
[13][Learning Magnetization Dynamics](https://arxiv.org/abs/1903.09499), A. Kovacs, J. Fischbacher, H. Oezelt, M. Gusenbauer, L. Exl, F. Bruckner, D.Suess, T.Schrefl, arXiV (2019)
130
-
131
-
[12][Computational micromagnetics with Commics](https://arxiv.org/abs/1812.05931), C.-M. Pfeiler, M. Ruggeri, B. Stiftner, L. Exl, M. Hochsteger, G. Hrkac, J. Schöberl, N. J. Mauser, D. Praetorius, arXiV (2018)
132
-
133
-
[11][Binding a hopfion in a chiral magnet nanodisk](https://journals.aps.org/prb/pdf/10.1103/PhysRevB.98.174437), Y. Liu, R. K. Lake, and J. Zang, Physical Review B 98, 174437 (2018)
134
-
135
-
[10][Proposal for a micromagnetic standard problem for materials with Dzyaloshinskii–Moriya interaction](http://iopscience.iop.org/article/10.1088/1367-2630/aaea1c), D. Cortés-Ortuño, M. Beg, V. Nehruji, L. Breth, R. Pepper, T. Kluyver, G. Downing, T. Hesjedal, P. Hatton, T. Lancaster, R. Hertel, O. Hovorka and H. Fangohr, New Journal of Physics, Volume 20 (2018)
136
-
137
-
[9][Driving chiral domain walls in antiferromagnets using rotating magnetic fields](https://link.aps.org/doi/10.1103/PhysRevB.97.184418) K.Pan, L.Xing, H.Y.Yuan, and W.Wang, Physical Review B 97, 184418 (2018)
138
-
139
-
[8][Fidimag - A Finite Difference Atomistic and Micromagnetic Simulation Package](http://doi.org/10.5334/jors.223), Bisotti, M.-A., Cortés-Ortuño, D., Pepper, R., Wang, W., Beg, M., Kluyver, T. and Fangohr, H., Journal of Open Research Software, 6(1), p.22. (2018)
140
-
141
-
[7][Topological Spintronics in Confined Geometry](https://escholarship.org/uc/item/8wx626mw), Y. Liu, PhD Thesis, University of California Riverside (2017)
142
-
143
-
[6][Thermal stability and topological protection of skyrmions in nanotracks](https://www.nature.com/articles/s41598-017-03391-8), D. Cortés-Ortuño, W. Wang, M. Beg, R.A. Pepper, M-A. Bisotti, R. Carey, M. Vousden, T. Kluyver, O. Hovorka & H. Fangohr, Scientific Reports 7, 4060 (2017)
144
-
145
-
[5][Current-induced instability of domain walls in cylindrical nanowires](http://iopscience.iop.org/article/10.1088/1361-648X/aa9698/meta), W. Wang, Z. Zhang, R.A. Pepper, C. Mu, Y. Zhou & Hans Fangohr, Journal of Physics: Condensed Matter, 30, 1 (2017)
146
-
147
-
[4][Magnonic analog of relativistic Zitterbewegung in an antiferromagnetic spin chain](https://journals.aps.org/prb/abstract/10.1103/PhysRevB.96.024430), W. Wang, C. Gu, Y. Zhou & H. Fangohr, Phys. Rev. B 96 024430 (2017)
148
-
149
-
[3][Driving magnetic skyrmions with microwave fields](https://journals.aps.org/prb/abstract/10.1103/PhysRevB.92.020403) W. Wang, M. Beg, B. Zhang, W. Kuch, and H. Fangohr, Phys. Rev. B 92, 020403 (2015).
150
-
151
-
[2][Microwave-induced dynamic switching of magnetic skyrmion cores in nanodots](https://aip.scitation.org/doi/10.1063/1.4914496) B. Zhang, W. Wang, M. Beg, H. Fangohr, and W. Kuch, Applied Physics Letters 106, 102401 (2015).
152
88
153
-
[1][Magnon-Driven Domain-Wall Motion with the Dzyaloshinskii-Moriya Interaction](https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.114.087203) W. Wang, M. Albert, M. Beg, M-A. Bisotti, D. Chernyshenko, D. Cortés-Ortuño, I. Hawke & H. Fangohr, Phys. Rev. Lett. 114, 087203 (2015)
0 commit comments