Skip to content

Commit 1788c81

Browse files
Merge with main branch
2 parents feec815 + ca56c43 commit 1788c81

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

67 files changed

+4177
-2056
lines changed

.github/workflows/superlinter.yml

+2
Original file line numberDiff line numberDiff line change
@@ -29,3 +29,5 @@ jobs:
2929
VALIDATE_ALL_CODEBASE: true
3030
DEFAULT_BRANCH: master
3131
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
32+
FILTER_REGEX_EXCLUDE: .*fidimag/atomistic/fmmlib/*.*
33+
FILTER_REGEX_EXCLUDE: .*fidimag/atomistic/lib/fmmlib/*.*

Makefile

+3
Original file line numberDiff line numberDiff line change
@@ -1,5 +1,6 @@
11
PROJECT_DIR = $(abspath .)
22
EXTENSIONS_DIR = ${PROJECT_DIR}/fidimag/extensions
3+
USER_EXTENSIONS_DIR = ${PROJECT_DIR}/fidimag/extensions/user
34
PYTHON = python3
45
PYTEST = ${PYTHON} -m pytest
56

@@ -12,7 +13,9 @@ build:
1213

1314
clean:
1415
rm -rf ${EXTENSIONS_DIR}/*
16+
mkdir -p ${USER_EXTENSIONS_DIR}
1517
touch ${EXTENSIONS_DIR}/__init__.py
18+
touch ${USER_EXTENSIONS_DIR}/__init__.py
1619
rm -rf build
1720

1821
docker:

PUBLICATIONS.md

+71
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,71 @@
1+
# Publications
2+
3+
The following publications, in reverse chronological order, have used or cited Fidimag:
4+
5+
[32] [Thermal Evolution of Skyrmion Formation Mechanism in Chiral Multilayer Films](https://journals.aps.org/prapplied/abstract/10.1103/PhysRevApplied.17.044039) Phys. Rev. Applied 17, 044039 (2022)
6+
7+
[31] [Mutual conversion between a magnetic Néel hopfion and a Néel toron](https://journals.aps.org/prb/abstract/10.1103/PhysRevB.105.174407) Phys. Rev. B 105, 174407 (2022)
8+
9+
[30] [Unveiling the emergent traits of chiral spin textures in magnetic multilayers](https://onlinelibrary.wiley.com/doi/abs/10.1002/advs.202103978) Advanced Science Vol 9, Iss 6 (2022)
10+
11+
[29] [The magnetic genome of two-dimensional van der waals materials](https://pubs.acs.org/doi/full/10.1021/acsnano.1c09150) ACS Nano 16, 5, 6960–7079 (2022)
12+
13+
[28] [L-shaped electrode design for high-density spin–orbit torque magnetic random access memory with perpendicular shape anisotropy](https://iopscience.iop.org/article/10.1088/1361-6463/abf61d/) J. Phys. D: Appl. Phys. 54 285002 (2021)
14+
15+
[27] [Periodically modulated skyrmion strings in Cu2OSeO3](https://doi.org/10.1038/s41535-021-00373-y), npj Quantum Materials volume 6, Article number: 73 (2021)
16+
17+
[26] [Speeding up explicit numerical evaluation methods for micromagnetic simulations using demagnetizing field polynomial extrapolation](https://ieeexplore.ieee.org/document/9737008), IEEE Transactions on Magnetics, Vol 58 Issue 5 (2022)
18+
19+
[25] [A Review of Modelling in Ferrimagnetic Spintronics](https://journals.jps.jp/doi/full/10.7566/JPSJ.90.081001) J. Phys. Soc. Jpn. 90, 081001 (2021)
20+
21+
[24] [Topological defect-mediated skyrmion annihilation in three dimensions](https://www.nature.com/articles/s42005-021-00675-4) Communications Physics 4, 175 (2021)
22+
23+
[23] [Stray Field Calculation for Micromagnetic Simulations Using True Periodic Boundary Conditions](https://doi.org/10.1038/s41598-021-88541-9) Scientific Reports 11, 9202 (2021)
24+
25+
[22] [Field-free spin–orbit torque perpendicular magnetization switching in ultrathin nanostructures](https://doi.org/10.1038/s41524-020-0347-0), npj Computational Materials volume 6, 78 (2020)
26+
27+
[21] [Hybrid FFT algorithm for fast demagnetization field calculations on non-equidistant magnetic layers](https://doi.org/10.1016/j.jmmm.2020.166592)
28+
Journal of Magnetism and Magnetic Materials, Volume 503, 166592 (2020)
29+
30+
[20] [Review – Micromagnetic Simulation Using OOMMF and Experimental Investigations on Nano Composite Magnets](https://doi.org/10.1088/1742-6596/1172/1/012070)
31+
Review – Micromagnetic Simulation Using OOMMF and Experimental Investigations on Nano Composite Magnets, J. Phys.: Conf. Ser. 1172 012070
32+
33+
[19] [Spin waves in thin films and magnonic crystals with Dzyaloshinskii-Moriya interactions](https://arxiv.org/abs/1903.04288), arxiv:1903.04288 (2019)
34+
35+
[18] [Tomorrow's Micromagnetic Simulations](https://doi.org/10.1063/1.5093730), Journal of Applied Physics 125, 180901 (2019)
36+
37+
[17] [Diameter-independent skyrmion Hall angle in the plastic flow regime observed in chiral magnetic
38+
multilayers](https://arxiv.org/pdf/1908.04239.pdf](https://www.nature.com/articles/s41467-019-14232-9), Nature Communications volume 11, Article number: 428 (2020)
39+
40+
[16] [Efficient computation of demagnetising fields for magnetic multilayers using multilayered convolution](https://aip.scitation.org/doi/10.1063/1.5116754), Journal of Applied Physics 126, 103903 (2019)
41+
42+
[15] [Micromagnetics and spintronics: models and numerical methods](https://link.springer.com/article/10.1140%2Fepjb%2Fe2019-90599-6), Eur. Phys. J. B (2019) 92: 120
43+
44+
[14] [Nanoscale magnetic skyrmions and target states in confined geometries](https://journals.aps.org/prb/abstract/10.1103/PhysRevB.99.214408), Physical Review B 99, 214408 (2019)
45+
46+
[13] [Learning Magnetization Dynamics](https://www.sciencedirect.com/science/article/abs/pii/S0304885319307978?via%3Dihub), Journal of Magnetism and Magnetic Materials
47+
Volume 491, (2019)
48+
49+
[12] [Computational micromagnetics with Commics](https://doi.org/10.1016/j.cpc.2019.106965), Computer Physics Communications, 248 (2020)
50+
51+
[11] [Binding a hopfion in a chiral magnet nanodisk](https://journals.aps.org/prb/pdf/10.1103/PhysRevB.98.174437), Physical Review B 98, 174437 (2018)
52+
53+
[10] [Proposal for a micromagnetic standard problem for materials with Dzyaloshinskii–Moriya interaction](http://iopscience.iop.org/article/10.1088/1367-2630/aaea1c), New Journal of Physics, Volume 20 (2018)
54+
55+
[9] [Driving chiral domain walls in antiferromagnets using rotating magnetic fields](https://link.aps.org/doi/10.1103/PhysRevB.97.184418) Physical Review B 97, 184418 (2018)
56+
57+
[8] [Fidimag - A Finite Difference Atomistic and Micromagnetic Simulation Package](http://doi.org/10.5334/jors.223), Journal of Open Research Software, 6(1), p.22. (2018)
58+
59+
[7] [Topological Spintronics in Confined Geometry](https://escholarship.org/uc/item/8wx626mw), Y. Liu, PhD Thesis, University of California Riverside (2017)
60+
61+
[6] [Thermal stability and topological protection of skyrmions in nanotracks](https://www.nature.com/articles/s41598-017-03391-8), Scientific Reports 7, 4060 (2017)
62+
63+
[5] [Current-induced instability of domain walls in cylindrical nanowires](http://iopscience.iop.org/article/10.1088/1361-648X/aa9698/meta), Journal of Physics: Condensed Matter, 30, 1 (2017)
64+
65+
[4] [Magnonic analog of relativistic Zitterbewegung in an antiferromagnetic spin chain](https://journals.aps.org/prb/abstract/10.1103/PhysRevB.96.024430), Phys. Rev. B 96 024430 (2017)
66+
67+
[3] [Driving magnetic skyrmions with microwave fields](https://journals.aps.org/prb/abstract/10.1103/PhysRevB.92.020403) Phys. Rev. B 92, 020403 (2015).
68+
69+
[2] [Microwave-induced dynamic switching of magnetic skyrmion cores in nanodots](https://aip.scitation.org/doi/10.1063/1.4914496) Applied Physics Letters 106, 102401 (2015).
70+
71+
[1] [Magnon-Driven Domain-Wall Motion with the Dzyaloshinskii-Moriya Interaction](https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.114.087203) Phys. Rev. Lett. 114, 087203 (2015)

README.md

+4-69
Original file line numberDiff line numberDiff line change
@@ -17,8 +17,9 @@
1717
Fidimag solves finite-difference micromagnetic problems and supports atomistic simulations, using Python interface. The interface to both types of simulation is similar.
1818

1919
### Features
20+
* Optimal LLG equation integration using modern [Sundial's v6](https://github.com/LLNL/sundials/) CVODE solver
2021
* Offers LLG and LLG with spin torque terms (Zhang-Li and Sloncewski)
21-
* Calculations using the Nudged-Elastic-Band method to compute energy barriers.
22+
* Calculations using the Geodesic-Nudged-Elastic-Band and String methods to compute energy barriers.
2223
* Exchange, Zeeman, Demagnetising, Uniaxial Anisotropy energy classes.
2324
* Parallelised using OpenMP.
2425
* Easily extensible to add new features.
@@ -71,7 +72,9 @@ The results can be straightforwardly visualised from the outputted VTK files usi
7172
<img src="http://computationalmodelling.github.io/fidimag/figs/target.png" alt="Target Skyrmion State" width="250">
7273
</p>
7374

75+
### Publications
7476

77+
A list tracking publications that cite FIDIMAG can be found in the [Publications](PUBLICATIONS.md) document.
7578

7679

7780
### Attributions
@@ -82,75 +85,7 @@ If you use Fidimag, please cite as:
8285

8386
Bisotti, M.-A., Cortés-Ortuño, D., Pepper, R., Wang, W., Beg, M., Kluyver, T. and Fangohr, H., 2018. Fidimag – A Finite Difference Atomistic and Micromagnetic Simulation Package. Journal of Open Research Software, 6(1), p.22. DOI: http://doi.org/10.5334/jors.223
8487

85-
### Publications
86-
87-
The following publications, in reverse chronological order, have used or cited Fidimag:
88-
89-
[28] [L-shaped electrode design for high-density spin–orbit torque magnetic random access memory with perpendicular shape anisotropy](https://iopscience.iop.org/article/10.1088/1361-6463/abf61d/) K. Chi, Y. Shi, Z. Li, W. Zhang, Y. Xing, X. Feng, Y. Ma, H. Meng, B. Liu, J. Phys. D: Appl. Phys. 54 285002 (2021)
90-
91-
[27] [Periodically modulated skyrmion strings in Cu2OSeO3](https://doi.org/10.1038/s41535-021-00373-y) D. M. Burn, R. Brearton, K. J. Ran, S. L. Zhang, G. van der Laan, T. Hesjedal, npj Quantum Materials volume 6, Article number: 73 (2021)
92-
93-
[26] [Speeding up explicit numerical evaluation methods for micromagnetic simulations using demagnetizing field polynomial extrapolation](https://arxiv.org/abs/2107.06729) S. Lepadatu, arXiv:2107.06729 (2021)
94-
95-
[25] [A Review of Modelling in Ferrimagnetic Spintronics](https://journals.jps.jp/doi/full/10.7566/JPSJ.90.081001) Joseph Barker, Unai Atxitia, J. Phys. Soc. Jpn. 90, 081001 (2021)
96-
97-
[24] [Topological defect-mediated skyrmion annihilation in three dimensions](https://www.nature.com/articles/s42005-021-00675-4) M. T. Birch, D. Cortés-Ortuño, N. D. Khanh, S. Seki, A. Štefančič, G. Balakrishnan, Y. Tokura & P. D. Hatton, Communications Physics 4, 175 (2021)
98-
99-
[23] [Stray Field Calculation for Micromagnetic Simulations Using True Periodic Boundary Conditions](https://doi.org/10.1038/s41598-021-88541-9) F. Bruckner, A. Ducevic, P. Heistracher, C. Abert & D. Suess, Scientific Reports 11, 9202 (2021)
100-
101-
[22] [Field-free spin–orbit torque perpendicular magnetization switching in ultrathin nanostructures](https://doi.org/10.1038/s41524-020-0347-0)
102-
M. Dai, J-M. Hu, npj Computational Materials volume
103-
6, 78 (2020)
104-
105-
[21] [Hybrid FFT algorithm for fast demagnetization field calculations on non-equidistant magnetic layers](https://doi.org/10.1016/j.jmmm.2020.166592)
106-
P. Heistracher, F. Bruckner, C. Abert, C. Vogler, D. Suess, Journal of Magnetism and Magnetic Materials
107-
Volume 503, 166592 (2020)
108-
109-
[20] [Review – Micromagnetic Simulation Using OOMMF and Experimental Investigations on Nano Composite Magnets](https://doi.org/10.1088/1742-6596/1172/1/012070)
110-
Review – Micromagnetic Simulation Using OOMMF and Experimental Investigations on Nano Composite Magnets
111-
S. Sundara Mahalingam, B. V. Manikandan, S. Arockiaraj, J. Phys.: Conf. Ser. 1172 012070
112-
113-
[19] [Spin waves in thin films and magnonic crystals with Dzyaloshinskii-Moriya interactions](https://arxiv.org/abs/1903.04288)
114-
R. A. Gallardo, D. Cortés-Ortuño, R. E. Troncoso, P. Landeros, arxiv:1903.04288 (2019)
115-
116-
[18] [Tomorrow's Micromagnetic Simulations](https://doi.org/10.1063/1.5093730)
117-
J. Leliaert, J. Mulkers, Journal of Applied Physics 125, 180901 (2019)
118-
119-
[17] [Diameter-independent skyrmion Hall angle in the plastic flow regime observed in chiral magnetic
120-
multilayers](https://arxiv.org/pdf/1908.04239.pdf)
121-
K. Zeissler, S. Finizio, C. Barton, A. Huxtable, J. Massey, J. Raabe, A. V. Sadovnikov, S. A. Nikitov, R. Brearton, T. Hesjedal, G. van der Laan, M. C. Rosamond, E. H. Linfield, G. Burnell, C. H. Marrows, arXiv:1908.04239 (2019)
122-
123-
[16] [Efficient computation of demagnetising fields for magnetic multilayers using multilayered convolution](https://aip.scitation.org/doi/10.1063/1.5116754) S. Lepadatu, Journal of Applied Physics 126, 103903 (2019)
124-
125-
[15] [Micromagnetics and spintronics: models and numerical methods](https://link.springer.com/article/10.1140%2Fepjb%2Fe2019-90599-6) C. Abert, Eur. Phys. J. B (2019) 92: 120
126-
127-
[14] [Nanoscale magnetic skyrmions and target states in confined geometries](https://journals.aps.org/prb/abstract/10.1103/PhysRevB.99.214408), D. Cortés-Ortuño, N. Romming, M. Beg, K. von Bergmann, A. Kubetzka, O. Hovorka, H. Fangohr, R. Wiesendanger, Physical Review B 99, 214408 (2019)
128-
129-
[13] [Learning Magnetization Dynamics](https://arxiv.org/abs/1903.09499), A. Kovacs, J. Fischbacher, H. Oezelt, M. Gusenbauer, L. Exl, F. Bruckner, D.Suess, T.Schrefl, arXiV (2019)
130-
131-
[12] [Computational micromagnetics with Commics](https://arxiv.org/abs/1812.05931), C.-M. Pfeiler, M. Ruggeri, B. Stiftner, L. Exl, M. Hochsteger, G. Hrkac, J. Schöberl, N. J. Mauser, D. Praetorius, arXiV (2018)
132-
133-
[11] [Binding a hopfion in a chiral magnet nanodisk](https://journals.aps.org/prb/pdf/10.1103/PhysRevB.98.174437), Y. Liu, R. K. Lake, and J. Zang, Physical Review B 98, 174437 (2018)
134-
135-
[10] [Proposal for a micromagnetic standard problem for materials with Dzyaloshinskii–Moriya interaction](http://iopscience.iop.org/article/10.1088/1367-2630/aaea1c), D. Cortés-Ortuño, M. Beg, V. Nehruji, L. Breth, R. Pepper, T. Kluyver, G. Downing, T. Hesjedal, P. Hatton, T. Lancaster, R. Hertel, O. Hovorka and H. Fangohr, New Journal of Physics, Volume 20 (2018)
136-
137-
[9] [Driving chiral domain walls in antiferromagnets using rotating magnetic fields](https://link.aps.org/doi/10.1103/PhysRevB.97.184418) K.Pan, L.Xing, H.Y.Yuan, and W.Wang, Physical Review B 97, 184418 (2018)
138-
139-
[8] [Fidimag - A Finite Difference Atomistic and Micromagnetic Simulation Package](http://doi.org/10.5334/jors.223), Bisotti, M.-A., Cortés-Ortuño, D., Pepper, R., Wang, W., Beg, M., Kluyver, T. and Fangohr, H., Journal of Open Research Software, 6(1), p.22. (2018)
140-
141-
[7] [Topological Spintronics in Confined Geometry](https://escholarship.org/uc/item/8wx626mw), Y. Liu, PhD Thesis, University of California Riverside (2017)
142-
143-
[6] [Thermal stability and topological protection of skyrmions in nanotracks](https://www.nature.com/articles/s41598-017-03391-8), D. Cortés-Ortuño, W. Wang, M. Beg, R.A. Pepper, M-A. Bisotti, R. Carey, M. Vousden, T. Kluyver, O. Hovorka & H. Fangohr, Scientific Reports 7, 4060 (2017)
144-
145-
[5] [Current-induced instability of domain walls in cylindrical nanowires](http://iopscience.iop.org/article/10.1088/1361-648X/aa9698/meta), W. Wang, Z. Zhang, R.A. Pepper, C. Mu, Y. Zhou & Hans Fangohr, Journal of Physics: Condensed Matter, 30, 1 (2017)
146-
147-
[4] [Magnonic analog of relativistic Zitterbewegung in an antiferromagnetic spin chain](https://journals.aps.org/prb/abstract/10.1103/PhysRevB.96.024430), W. Wang, C. Gu, Y. Zhou & H. Fangohr, Phys. Rev. B 96 024430 (2017)
148-
149-
[3] [Driving magnetic skyrmions with microwave fields](https://journals.aps.org/prb/abstract/10.1103/PhysRevB.92.020403) W. Wang, M. Beg, B. Zhang, W. Kuch, and H. Fangohr, Phys. Rev. B 92, 020403 (2015).
150-
151-
[2] [Microwave-induced dynamic switching of magnetic skyrmion cores in nanodots](https://aip.scitation.org/doi/10.1063/1.4914496) B. Zhang, W. Wang, M. Beg, H. Fangohr, and W. Kuch, Applied Physics Letters 106, 102401 (2015).
15288

153-
[1] [Magnon-Driven Domain-Wall Motion with the Dzyaloshinskii-Moriya Interaction](https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.114.087203) W. Wang, M. Albert, M. Beg, M-A. Bisotti, D. Chernyshenko, D. Cortés-Ortuño, I. Hawke & H. Fangohr, Phys. Rev. Lett. 114, 087203 (2015)
15489

15590
### Acknowledgements
15691

bin/install-sundials.sh

+23-18
Original file line numberDiff line numberDiff line change
@@ -5,7 +5,10 @@ set -e
55
# when SUNDIALS moved to a CMake-based installation. Will install locally.
66
# It may need environment variables to work, like `export CC=gcc` in ARCHER.
77

8-
SUNDIALS=sundials-2.6.2
8+
# Github release from Sundials repository
9+
# https://github.com/LLNL/sundials
10+
SUNDIALS_TAG=v6.6.1
11+
SUNDIALS=sundials-6.6.1
912

1013
# Make sure CMake is installed, since SUNDIALS requires it.
1114
type cmake >/dev/null 2>&1 || { printf "CMake required to build SUNDIALS. You can install it by typing: \nsudo apt install cmake\n"; exit 1;}
@@ -21,39 +24,41 @@ mkdir -p ${LIBS_DIR}
2124
cd ${LIBS_DIR}
2225

2326
download_and_cmake_install() {
24-
# $1 name of the package
25-
# $2 URL where ${1}.tar.gz can be obtained
26-
# $3 configure options
27-
if [ ! -e ${1}.tar.gz ]; then
28-
echo "Downloading "${1}"."
29-
wget -q ${2}/${1}.tar.gz
27+
# $1 tag of the package
28+
# $2 name of the package
29+
# $3 URL where ${1}.tar.gz can be obtained
30+
# $4 configure options
31+
if [ ! -e ${1}/${2}.tar.gz ]; then
32+
echo "Downloading "${3}/${1}/${2}.tar.gz"."
33+
wget -q -O ${2}.tar.gz ${3}/${1}/${2}.tar.gz
3034
fi;
3135

32-
if [ ! -e ${1} ]; then
33-
tar -xzf ${1}.tar.gz
36+
if [ ! -e ${2} ]; then
37+
tar -xzf ${2}.tar.gz
3438

35-
echo "Configuring "${1}"."
36-
mkdir ${1}_build
37-
cd ${1}_build
38-
cmake ${3} ../${1}
39+
echo "Configuring "${2}"."
40+
mkdir ${2}_build
41+
cd ${2}_build
42+
cmake ${4} ../${2}
3943

40-
echo "Compiling and installing "${1}"."
44+
echo "Compiling and installing "${2}"."
4145
{
4246
make -j2
4347
make install
4448
} > /dev/null
4549

4650
echo "Cleaning up."
4751
cd ..
48-
rm -rf ${1}
49-
rm -rf ${1}_build
52+
rm -rf ${2}
53+
rm -rf ${2}_build
5054

5155
cd ${HERE_DIR}
5256
echo "Done."
5357
fi;
5458
}
5559

5660
download_and_cmake_install \
61+
${SUNDIALS_TAG} \
5762
${SUNDIALS} \
58-
http://computation.llnl.gov/projects/sundials-suite-nonlinear-differential-algebraic-equation-solvers/download \
59-
"-DBUILD_STATIC_LIBS=OFF -DBUILD_SHARED_LIBS=ON -DCMAKE_INSTALL_PREFIX="${LIBS_DIR}" -DEXAMPLES_ENABLE=OFF -DLAPACK_ENABLE=ON -DOPENMP_ENABLE=ON"
63+
https://github.com/LLNL/sundials/releases/download \
64+
"-DBUILD_STATIC_LIBS=OFF -DBUILD_SHARED_LIBS=ON -DCMAKE_INSTALL_PREFIX="${LIBS_DIR}" -DEXAMPLES_ENABLE=OFF -DENABLE_LAPACK=ON -DENABLE_OPENMP=ON"

0 commit comments

Comments
 (0)