-
Notifications
You must be signed in to change notification settings - Fork 39
/
Copy pathumap_fig.py
379 lines (304 loc) · 12.8 KB
/
umap_fig.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
import argparse
import csv
from pathlib import Path
import pickle
from typing import Dict, List, Set, Union
import h5py
import matplotlib.pyplot as plt
from matplotlib.cm import ScalarMappable
from matplotlib.patches import Ellipse
import numpy as np
from numpy import random
import seaborn as sns
from tqdm import tqdm
import umap
sns.set_theme(style='white', context='paper')
NBINS=50
def reduce_fps(fps_h5: str, k: Union[int, float] = 0.1,
overwrite: bool = False) -> np.ndarray:
fps_h5 = Path(fps_h5)
fps_reduced_npy = fps_h5.with_name(f'{fps_h5.stem}_reduced.npy')
if fps_reduced_npy.exists() and not overwrite:
return np.load(fps_reduced_npy)
with h5py.File(str(fps_h5), 'r') as h5f:
fps = h5f['fps'][:]
if isinstance(k, float):
k = int(k*len(fps))
train_idxs = random.choice(len(fps), size=k, replace=False)
X_train = fps[train_idxs]
transform = umap.UMAP(
n_neighbors=15, metric='jaccard', n_components=2, verbose=True
).fit(X_train)
fps_reduced = transform.transform(fps)
fps_reduced = np.empty((len(fps), 2))
for i in tqdm(range(100000)):
fps_reduced[i] = transform.tranform(fps[i])
np.save(fps_reduced_npy, fps_reduced)
print(f'Reduced fingerprints saved to {fps_reduced_npy}')
return fps_reduced
def get_num_iters(expt_dir: str) -> int:
data_dir = Path(expt_dir) / 'data'
scores_csvs = [p_csv for p_csv in data_dir.iterdir()
if 'iter' in p_csv.stem]
return len(scores_csvs)
def read_scores(scores_csv: str) -> Dict:
"""read the scores contained in the file located at scores_csv"""
scores = {}
failures = {}
with open(scores_csv) as fid:
reader = csv.reader(fid)
next(reader)
for row in reader:
try:
scores[row[0]] = float(row[1])
except:
failures[row[0]] = None
return scores, failures
def get_new_smis_by_epoch(scores_csvs: List[str]) -> List[Dict]:
"""get the set of new points and associated scores acquired at each
iteration in the list of scores_csvs that are already sorted by iteration"""
all_smis = set()
new_smiss = []
for scores_csv in scores_csvs:
scores, _ = read_scores(scores_csv)
new_smis = {smi for smi in scores.keys()
if smi not in all_smis}
new_smiss.append(new_smis)
all_smis.update(new_smis)
return new_smiss
def add_ellipses(ax, invert=False):
kwargs = dict(fill=False, color='white' if invert else 'black', lw=1.)
ax.add_patch(Ellipse(xy=(6.05, -6.0), width=2.9, height=1.2, **kwargs))
ax.add_patch(Ellipse(xy=(16.05, 4.5), width=1.7, height=2.6, **kwargs))
ax.add_patch(Ellipse(xy=(2.2, 12.7), width=1.7, height=2.3, **kwargs))
def add_model_data(fig, gs, expt_dir, i, model,
d_smi_fp_score, zmin, zmax,
portrait, n_models):
scores_csvs = [p_csv for p_csv in (Path(expt_dir)/'data').iterdir()
if 'iter' in p_csv.stem]
scores_csvs = sorted(scores_csvs, key=lambda p: int(p.stem.split('_')[4]))
new_smiss = get_new_smis_by_epoch(scores_csvs)
if portrait:
MAX_ROW = len(new_smiss)
else:
MAX_ROW = n_models
axs = []
for j, new_smis in enumerate(new_smiss):
if portrait:
row, col = j, i
else:
row, col = i, j
ax = fig.add_subplot(gs[row, col])
fps_scores = sorted(
[d_smi_fp_score[smi] for smi in new_smis],
key=lambda fp_score: fp_score[1], reverse=True
)
fps, scores = zip(*fps_scores)
fps, scores = np.array(fps), -1*np.array(scores)
ax.scatter(
fps[:, 0], fps[:, 1],
marker='.', c=scores, s=2, cmap='plasma', vmin=zmin, vmax=zmax
)
add_ellipses(ax)
if row==0:
if portrait:
ax.set_title(model)
if row==MAX_ROW:
if not portrait:
ax.set_xlabel(j)
if col==0:
if portrait:
ax.set_ylabel(row)
else:
ax.set_ylabel(model)
ax.set_xticks([])
ax.set_yticks([])
axs.append(ax)
return fig, axs
def si_fig(d_smi_fp_score, expt_dirs, models,
portrait=True):
zmin = -max(score for score in d_smi_score.values() if score < 0)
zmax = -min(d_smi_score.values())
zmin = 9 #round((zmin+zmax)/2)
n_models = len(expt_dirs)
n_iters = get_num_iters(expt_dirs[0])
if portrait:
fig = plt.figure(figsize=(10*1.15, 15), constrained_layout=True)
gs = fig.add_gridspec(nrows=n_iters, ncols=n_models)
else:
fig = plt.figure(figsize=(15*1.15, 10), constrained_layout=True)
gs = fig.add_gridspec(nrows=n_models, ncols=n_iters)
axs = []
for i, (expt_dir, model) in enumerate(zip(expt_dirs, models)):
fig, axs_ = add_model_data(fig, gs, expt_dir, i, model,
d_smi_fp_score, zmin, zmax,
portrait, n_models)
axs.extend(axs_)
ticks = list(range(zmin, round(zmax)))
colormap = ScalarMappable(cmap='plasma')
colormap.set_clim(zmin, zmax)
cbar = plt.colorbar(colormap, ax=axs, aspect=60, ticks=ticks)
cbar.ax.set_title('Score')
ticks[0] = f'≤{ticks[0]}'
cbar.ax.set_yticklabels(ticks)
if portrait:
fig.text(0.01, 0.5, 'Iteration', ha='center', va='center',
rotation='vertical', fontsize=14, fontweight='bold',)
# fig.text(0.465, 1.01, 'Model', ha='center', va='top',
# fontsize=14, fontweight='bold',)
else:
# fig.text(0.01, 0.5, 'Model', ha='center', va='center',
# rotation='vertical', fontsize=16, fontweight='bold')
fig.text(0.48, 0.01, 'Iteration', ha='center', va='center',
fontsize=16, fontweight='bold',)
return fig
def add_top1k_panel(fig, gs, d_smi_fp_score):
top_1k_fps_scores = sorted(
d_smi_fp_score.values(),
key = lambda fp_score: fp_score[1]
)[:1000]
top_1k_fps_embedded, _ = zip(*top_1k_fps_scores)
top_1k_fps_embedded = np.array(top_1k_fps_embedded)
ax = fig.add_subplot(gs[0:2, 0:2])
ax.scatter(top_1k_fps_embedded[:, 0], top_1k_fps_embedded[:, 1],
c='grey', marker='.')
add_ellipses(ax)
return fig, ax
def add_density_panel(fig, gs, ax1, d_smi_fp_score):
fps, _ = zip(*d_smi_fp_score.values())
fps_embedded = np.array(fps)
ax2 = fig.add_subplot(gs[0:2, 2:])
_, _, _, im = ax2.hist2d(
x=fps_embedded[:, 0], y=fps_embedded[:, 1],
bins=NBINS, cmap='Purples_r'
)
ax2_cbar = plt.colorbar(im, ax=(ax1, ax2), aspect=20)
ax2_cbar.ax.set_title('Points')
ax2.set_yticks([])
add_ellipses(ax2, True)
return fig, ax2
def add_model_row(fig, gs, expt_dir, row, iters, model,
d_smi_fp_score, zmin, zmax, ):
scores_csvs = [p_csv for p_csv in (Path(expt_dir)/'data').iterdir()
if 'iter' in p_csv.stem]
scores_csvs = sorted(scores_csvs, key=lambda p: int(p.stem.split('_')[4]))
col = 0
axs = []
for j, new_smis in enumerate(get_new_smis_by_epoch(scores_csvs)):
if j not in iters:
continue
ax = fig.add_subplot(gs[row, col])
fps_scores = sorted(
[d_smi_fp_score[smi] for smi in new_smis],
key=lambda fp_score: fp_score[1], reverse=True)
fps, scores = zip(*fps_scores)
fps, scores = np.array(fps), -1*np.array(scores)
ax.scatter(
fps[:, 0], fps[:, 1], alpha=0.75,
marker='.', c=scores, s=2, cmap='plasma', vmin=zmin, vmax=zmax
)
add_ellipses(ax)
if row==4:
ax.set_xlabel(j)
if col==0:
ax.set_ylabel(model)
ax.set_xticks([])
ax.set_yticks([])
axs.append(ax)
col+=1
return fig, axs
def main_fig(d_smi_fp_score, expt_dirs,
models=None, iters=None,):
models = ['RF', 'NN', 'MPN'] or models
iters = [0, 1, 3, 5] or iters[:4]
_, scores = d_smi_fp_score.values()
zmax = -min(scores)
zmin = -max(score for score in scores if score < 0)
zmin = 9 #round(2*(zmin+zmax)/3)
nrows = 2+len(expt_dirs)
ncols = 4
fig = plt.figure(figsize=(2*ncols*1.15, 2*nrows), constrained_layout=True)
gs = fig.add_gridspec(nrows=nrows, ncols=4)
fig, ax1 = add_top1k_panel(fig, gs, d_smi_fp_score)
fig, ax2 = add_density_panel(fig, gs, ax1, d_smi_fp_score)
axs = []
for i, (expt_dir, model) in enumerate(zip(expt_dirs, models)):
fig, axs_ = add_model_row(fig, gs, expt_dir, i+2, iters, model,
d_smi_fp_score, zmin, zmax)
axs.extend(axs_)
colormap = ScalarMappable(cmap='plasma')
colormap.set_clim(zmin, zmax)
ticks = list(range(zmin, round(zmax)))
cbar = plt.colorbar(colormap, ax=axs, aspect=30, ticks=ticks)
cbar.ax.set_title('Score')
ticks[0] = f'≤{ticks[0]}'
cbar.ax.set_yticklabels(ticks)
fig.text(-0.03, 1.03, 'A', transform=ax1.transAxes,
fontsize=16, fontweight='bold', va='center', ha='right')
fig.text(-0.0, 1.03, 'B', transform=ax2.transAxes,
fontsize=16, fontweight='bold', va='center', ha='left')
fig.text(-0.03, -0.075, 'C', transform=ax1.transAxes,
fontsize=16, fontweight='bold', va='center', ha='right')
fig.text(0.475, 0.005, 'Iteration', ha='center', va='center',
fontweight='bold')
return fig
def restricted_float_or_int(arg: str) -> Union[float, int]:
try:
value = int(arg)
if value < 0:
raise argparse.ArgumentTypeError(f'{value} is less than 0')
except ValueError:
value = float(arg)
if value < 0 or value > 1:
raise argparse.ArgumentTypeError(f'{value} must be in [0,1]')
return value
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--fps-h5',
help='an HDF5 file containing the full fingerprint of each molecule in the library.')
parser.add_argument('-k', type=restricted_float_or_int, default=0.1,
help='the number or fraction of the library from which to train a UMAP embedding. Large libraries (e.g., HTS) are memory-limited and must be trained on a fraction.')
parser.add_argument('--overwrite', action='store_true', default=False,
help='The reduced fingerprints are saved in a file after calculation for reproducibility/speed. Setting this to true will recalculate and overwrite the file, if it exists.')
parser.add_argument('--fps-npy',
help='the filepath of a .npy file containing the reduced fingerprints')
parser.add_argument('--scores-dict-pkl',
help='the filepath of a pickle file containing the scores dictionary')
parser.add_argument('--smis-csv',
help='a csv file containing the SMILES string associated with each fingerprint in fps-h5. Must be in the same ordering as fps-h5')
parser.add_argument('--expt-dirs', nargs='+',
help='the MolPAL output directories')
parser.add_argument('--models', nargs='+',
help='the respective name of each model used in --expt-dirs')
parser.add_argument('--iters', nargs=4, type=int, default=[0, 1, 3, 5],
help='the FOUR iterations of points to show in the main figure')
parser.add_argument('--si-fig', action='store_true', default=False,
help='whether to produce generate the SI fig instead of the main fig')
parser.add_argument('--landscape', action='store_true', default=False,
help='whether to produce a landscape SI figure')
args = parser.parse_args()
if args.fps_npy:
fps_embedded = np.load(args.fps_npy)
else:
fps_embedded = reduce_fps(args.fps_h5, args.k, args.overwrite)
d_smi_score = pickle.load(open(args.scores_dict_pkl, 'rb'))
with open(args.smis_csv, 'r') as fid:
reader = csv.reader(fid); next(reader)
smis = [row[0] for row in tqdm(reader)]
d_smi_idx = {smi: i for i, smi in enumerate(smis)}
d_smi_fp_score = {
smi: (fps_embedded[i], d_smi_score[smi])
for i, smi in tqdm(enumerate(smis)) if smi in d_smi_score
}
if not args.si_fig:
fig = main_fig(
d_smi_fp_score, args.expt_dirs, args.models, args.iters
)
name = input('Figure name: ')
fig.savefig(f'paper/figures/{name}.pdf')
else:
fig = si_fig(
d_smi_fp_score, args.expt_dirs, args.models, not args.landscape
)
name = input('Figure name: ')
fig.savefig(f'paper/figures/{name}.pdf')