forked from sureshmangs/Code
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path1137. N-th Tribonacci Number.cpp
90 lines (57 loc) · 1.4 KB
/
1137. N-th Tribonacci Number.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
The Tribonacci sequence Tn is defined as follows:
T0 = 0, T1 = 1, T2 = 1, and Tn+3 = Tn + Tn+1 + Tn+2 for n >= 0.
Given n, return the value of Tn.
Example 1:
Input: n = 4
Output: 4
Explanation:
T_3 = 0 + 1 + 1 = 2
T_4 = 1 + 1 + 2 = 4
Example 2:
Input: n = 25
Output: 1389537
Constraints:
0 <= n <= 37
The answer is guaranteed to fit within a 32-bit integer, ie. answer <= 2^31 - 1.
// Memoization
class Solution {
public:
vector <int> dp;
int solve(int n) {
if (n == 0 || n == 1) return n;
if (n == 2) return 1;
if (dp[n] != -1) return dp[n];
return dp[n] = solve(n - 1) + solve(n - 2) + solve(n - 3);
}
int tribonacci(int n) {
dp.resize(n + 1, -1);
return solve(n);
}
};
// DP
class Solution {
public:
int tribonacci(int n) {
if (n == 0 || n == 1) return n;
vector <int> dp(n + 1);
dp[0] = 0;
dp[1] = 1;
dp[2] = 1;
for (int i = 3; i <= n ; i++) {
dp[i] = dp[i - 1] + dp[i - 2] + dp[i - 3];
}
return dp[n];
}
};
// DP (less space)
class Solution {
public:
int tribonacci(int n) {
if (n == 0 || n == 1) return n;
vector <int> dp = {0, 1, 1};
for (int i = 3; i <= n ; i++) {
dp[i % 3] = dp[0] + dp[1] + dp[2];
}
return dp[n % 3];
}
};