-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathexpand.py
296 lines (267 loc) · 10.6 KB
/
expand.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
import os
from os import path
import argparse
import numpy as np
import torch
from torch import nn
from torch.autograd import Variable
import cv2
from smooth import smoothen_luminance
def process_path(directory, create=False):
directory = path.expanduser(directory)
directory = path.normpath(directory)
directory = path.abspath(directory)
if create:
try:
os.makedirs(directory)
except:
pass
return directory
def split_path(directory):
directory = process_path(directory)
name, ext = path.splitext(path.basename(directory))
return path.dirname(directory), name, ext
# From torchnet
def compose(transforms):
"Composes list of transforms (each accept and return one item)"
assert isinstance(transforms, list)
for transform in transforms:
assert callable(transform), "list of functions expected"
def composition(obj):
"Composite function"
for transform in transforms:
obj = transform(obj)
return obj
return composition
def replace_specials_(x, val=0):
x[np.isinf(x).sum() | np.isnan(x).sum()] = val
return x
def map_range(x, low=0, high=1):
return np.interp(x, [x.min(), x.max()], [low, high]).astype(x.dtype)
def str2bool(x):
if x is None or x.lower() in ['no', 'false', 'f', '0']:
return False
else:
return True
def cv2torch(np_img):
rgb = np_img[:, :, (2, 1, 0)]
return torch.from_numpy(rgb.swapaxes(1, 2).swapaxes(0, 1))
def torch2cv(t_img):
return t_img.numpy().swapaxes(0, 2).swapaxes(0, 1)[:, :, (2, 1, 0)]
def resize(x):
if opt.resize:
return cv2.resize(x, (opt.width, opt.height))
else:
return x
# Model definition
class ExpandNet(nn.Module):
def __init__(self):
super(ExpandNet, self).__init__()
def layer(nIn, nOut, k, s, p, d=1):
return nn.Sequential(nn.Conv2d(nIn, nOut, k, s, p, d),
nn.SELU(inplace=True))
self.nf = 64
self.local_net = nn.Sequential(
layer(3, 64, 3, 1, 1),
layer(64, 128, 3, 1, 1),
)
self.mid_net = nn.Sequential(
layer(3, 64, 3, 1, 2, 2),
layer(64, 64, 3, 1, 2, 2),
layer(64, 64, 3, 1, 2, 2),
nn.Conv2d(64, 64, 3, 1, 2, 2)
)
self.glob_net = nn.Sequential(
layer(3, 64, 3, 2, 1),
layer(64, 64, 3, 2, 1),
layer(64, 64, 3, 2, 1),
layer(64, 64, 3, 2, 1),
layer(64, 64, 3, 2, 1),
layer(64, 64, 3, 2, 1),
nn.Conv2d(64, 64, 4, 1, 0),
)
self.end_net = nn.Sequential(
layer(256, 64, 1, 1, 0),
nn.Conv2d(64, 3, 1, 1, 0),
nn.Sigmoid()
)
# This uses stitching is for low memory usage
def forward(self, t_input):
vrs = torch.__version__.split('.')
newer_version = False
if int(vrs[0])==0 and int(vrs[1]) > 3:
newer_version = True
torch.no_grad()
if t_input.dim() == 3:
t_input = t_input.unsqueeze(0)
if t_input.size(-3) == 1:
# For grey images
t_input = t_input.expand(1, 3, *t_input.size()[-2:])
# Evaluate global features
resized = cv2torch(cv2.resize(torch2cv(t_input.cpu()[0]), (256, 256)))
resized = resized.unsqueeze(0)
if opt.use_gpu:
resized = resized.cuda()
if newer_version:
v_input_resize = Variable(resized)
else:
v_input_resize = Variable(resized, volatile=True)
glob = self.glob_net(v_input_resize)
overlap = 20 #
skip = int(overlap/2)
result = t_input.clone()
if newer_version:
v_input = Variable(t_input)
else:
v_input = Variable(t_input, volatile=True)
v_input = torch.nn.functional.pad(v_input,(skip,skip,skip,skip))
height, width = v_input.size(-2), v_input.size(-1)
num_h = int(np.ceil((result.size(-2)-skip)/(opt.patch_size-overlap)))
num_w = int(np.ceil((result.size(-1)-skip)/(opt.patch_size-overlap)))
for h_index in range(num_h):
for w_index in range(num_w):
h_start = h_index*(opt.patch_size-overlap)
w_start = w_index*(opt.patch_size-overlap)
h_end = min(h_start + opt.patch_size, height)
w_end = min(w_start + opt.patch_size, width)
v_input_slice = v_input[:,:,h_start:h_end, w_start:w_end]
loc = self.local_net(v_input_slice)
mid = self.mid_net(v_input_slice)
exp_glob = glob.expand(1, 64, h_end-h_start, w_end-w_start)
fuse = torch.cat((loc, mid, exp_glob), 1)
res = self.end_net(fuse).data
# stitch
h_start_stitch = h_index*(opt.patch_size-overlap)
w_start_stitch = w_index*(opt.patch_size-overlap)
h_end_stitch = min(h_start + opt.patch_size-overlap, height)
w_end_stitch = min(w_start + opt.patch_size-overlap, width)
res_slice = res[:,:,skip:-skip, skip:-skip]
result[:,:,h_start_stitch:h_end_stitch,
w_start_stitch:w_end_stitch].copy_(res_slice)
del fuse, loc, mid, res
return result[0]
## Parameters
parser = argparse.ArgumentParser()
arg = parser.add_argument
arg('ldr', nargs='+', type=process_path, help='Ldr image(s)')
arg('--out', type=lambda x: process_path(x, True),
default=None, help='Output location.')
arg('--video', type=str2bool, default=False, help='Whether input is a video.')
arg('--patch_size', type=int, default=256,
help='Patch size (to limit memory use).')
arg('--resize', type=str2bool, default=False, help='Use resized input.')
arg('--width', type=int, default=960, help='Image width resizing.')
arg('--height', type=int, default=540, help='Image height resizing.')
arg('--tag', default=None, help='Tag for outputs.')
arg('--use_gpu', type=str2bool, default=torch.cuda.is_available(),
help='Use GPU for prediction.')
arg('--tone_map',
choices=['exposure', 'reinhard', 'mantiuk', 'drago', 'durand'],
default=None, help='Tone Map resulting HDR image.')
arg('--stops', type=float, default=0.0,
help='Stops (loosely defined here) for exposure tone mapping.')
arg('--gamma', type=float, default=1.0,
help='Gamma curve value (if tone mapping).')
opt = parser.parse_args()
net = ExpandNet()
net.load_state_dict(torch.load('weights.pth', map_location=lambda s, l: s))
net.eval()
preprocess = compose([
lambda x: x.astype('float32'),
resize,
map_range,
replace_specials_])
class Exposure(object):
def __init__(self, stops, gamma):
self.stops = stops
self.gamma = gamma
def process(self, img):
return np.clip(img*(2**self.stops), 0, 1)**self.gamma
def tone_map(img, tmo_name):
if (tmo_name == 'exposure'):
tmo = Exposure(gamma=opt.gamma, stops=opt.stops)
if (tmo_name == 'reinhard'):
tmo = cv2.createTonemapReinhard(intensity=-1.0,
light_adapt=0.8, color_adapt=0.0)
elif tmo_name == 'mantiuk':
tmo = cv2.createTonemapMantiuk(saturation=1.0, scale=0.75)
elif tmo_name == 'drago':
tmo = cv2.createTonemapDrago(saturation=1.0, bias=0.85)
elif tmo_name == 'durand':
tmo = cv2.createTonemapDurand(contrast=3, saturation=1.0,
sigma_space=8, sigma_color=0.4)
return tmo.process(img)
def create_name(inp, tag, ext, out, extra_tag):
root, name, _ = split_path(inp)
if extra_tag is not None:
tag = '{0}_{1}'.format(tag, extra_tag)
if out is not None:
root = out
return path.join(root, '{0}_{1}.{2}'.format(name, tag, ext))
if opt.video:
if opt.tone_map is None:
opt.tone_map = 'reinhard'
video_file = opt.ldr[0]
cap_in = cv2.VideoCapture(video_file)
fps = cap_in.get(cv2.CAP_PROP_FPS)
width = int(cap_in.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap_in.get(cv2.CAP_PROP_FRAME_HEIGHT))
n_frames = cap_in.get(cv2.CAP_PROP_FRAME_COUNT)
lum_values = np.ndarray((2,int(n_frames)), dtype='float32')
predictions = []
lum_percs = []
while(cap_in.isOpened()):
perc = cap_in.get(cv2.CAP_PROP_POS_FRAMES)*100/n_frames
print('\rConverting video: {0:.2f}%'.format(perc), end='')
ret, loaded = cap_in.read()
if loaded is None:
break
ldr_input = preprocess(loaded)
t_input = cv2torch(ldr_input)
if opt.use_gpu:
net.cuda()
t_input = t_input.cuda()
predictions.append(torch2cv(net(t_input).cpu()))
percs = np.percentile(predictions[-1], (1,25, 50, 75, 99))
lum_percs.append(percs)
print()
cap_in.release()
smooth_predictions = smoothen_luminance(predictions, lum_percs)
fourcc = cv2.VideoWriter_fourcc(*'X264')
out_vid_name = create_name(video_file, 'prediction', 'avi',
opt.out, opt.tag)
out_vid = cv2.VideoWriter(out_vid_name, fourcc, fps, (width,height))
for i, pred in enumerate(smooth_predictions):
perc = (i+1)*100/n_frames
print('\rWriting video: {0:.2f}%'.format(perc), end='')
tmo_img = tone_map(pred, opt.tone_map)
tmo_img = (tmo_img*255).astype(np.uint8)
out_vid.write(tmo_img)
print()
out_vid.release()
else:
for ldr_file in opt.ldr:
loaded = cv2.imread(ldr_file,
flags=cv2.IMREAD_ANYDEPTH + cv2.IMREAD_COLOR)
if loaded is None:
print('Could not load {0}'.format(ldr_file))
continue
ldr_input = preprocess(loaded)
if opt.resize:
out_name = create_name(ldr_file, 'resized', 'jpg', opt.out,
opt.tag)
cv2.imwrite(out_name, (ldr_input*255).astype(int))
t_input = cv2torch(ldr_input)
if opt.use_gpu:
net.cuda()
t_input = t_input.cuda()
prediction = map_range(torch2cv(net(t_input).cpu()), 0, 1)
out_name = create_name(ldr_file, 'prediction', 'hdr', opt.out,
opt.tag)
cv2.imwrite(out_name, prediction)
if opt.tone_map is not None:
tmo_img = tone_map(prediction, opt.tone_map)
out_name = create_name(ldr_file,
'prediction_{0}'.format(opt.tone_map),
'jpg', opt.out, opt.tag)
cv2.imwrite(out_name, (tmo_img*255).astype(int))