-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathretrain.py
116 lines (93 loc) · 3.7 KB
/
retrain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
# %%
from __future__ import absolute_import
from __future__ import print_function
from __future__ import division
import numpy as np
from keras import backend as K
from keras.callbacks import ModelCheckpoint, ReduceLROnPlateau, EarlyStopping
from keras.datasets import cifar10
from keras.optimizers import Adam, SGD
from keras.preprocessing.image import ImageDataGenerator
from keras.utils import np_utils
from keras.models import Sequential, Model, load_model
from keras import applications
from keras import optimizers
from keras.layers import Dropout, Flatten, Dense
from time import time
import sys
sys.path.append("../")
from densenet import densenet121_model
# %%
DATAPATH = "./"
ROOTPATH = "/home/zifanw/project-deep-vision-explanations/densenet/"
img_rows, img_cols, img_channel = 224, 224, 3
batch_size = 16
nb_classes = 257
epochs = 10
img_rows, img_cols = 224, 224
img_channels = 3
# Parameters for the DenseNet model builder
if K.image_data_format() == 'channels_first':
img_dim = (img_channels, img_rows, img_cols)
else:
img_dim = (img_rows, img_cols, img_channels)
dropout_rate = 0.0 # 0.0 for data augmentation
color_mean = [123.68, 116.779, 103.939]
#%%
model = densenet121_model(img_rows=img_rows,
img_cols=img_cols,
color_type=img_channel,
num_classes=nb_classes,
weight_path_prefix="../")
print('Model is created')
# sgd = SGD(lr=1e-3, decay=1e-6, momentum=0.9, nesterov=True)
optimizer = Adam() # Using Adam instead of SGD to speed up training
model.compile(loss='categorical_crossentropy',
optimizer=optimizer,
metrics=['acc'])
print('Finished compiling')
X_train = np.load(DATAPATH + "train_x.npy").astype('float')
Y_train = np.load(
DATAPATH + "train_y.npy"
) # The index starts from 1. We substract 1 from it to left shift it to 0.
X_test = np.load(DATAPATH + "test_x.npy").astype('float')
Y_test = np.load(
DATAPATH + "test_y.npy"
) # The index starts from 1. We substract 1 from it to left shift it to 0.
for i in range(3):
X_train[:, :, :, i] -= color_mean[i]
X_test[:, :, :, i] -= color_mean[i]
Y_train = np_utils.to_categorical(Y_train, num_classes=nb_classes)
Y_test = np_utils.to_categorical(Y_test, num_classes=nb_classes)
#X_train /= 255.
#X_test /= 255.
# %%
generator = ImageDataGenerator(rotation_range=15,
width_shift_range=5. / 32,
height_shift_range=5. / 32)
generator.fit(X_train, seed=7)
weights_file = ROOTPATH + "weights/DenseNetCaltech_" + str(time()) + ".h5"
lr_reducer = ReduceLROnPlateau(monitor='val_loss',
factor=np.sqrt(0.1),
cooldown=0,
patience=10,
min_lr=5e-6)
early_stopper = EarlyStopping(monitor='val_acc', min_delta=1e-4, patience=20)
model_checkpoint = ModelCheckpoint(weights_file,
monitor="val_acc",
save_best_only=True,
save_weights_only=True,
verbose=1)
callbacks = [lr_reducer, early_stopper, model_checkpoint]
#model.load_weights(ROOTPATH + "weights/DenseNetCaltech.h5")
# %%
model.fit_generator(generator.flow(X_train, Y_train, batch_size=batch_size),
steps_per_epoch=len(X_train) // batch_size,
epochs=epochs,
callbacks=callbacks,
validation_data=(X_test, Y_test),
verbose=1)
# %%
scores = model.evaluate(X_test, Y_test, batch_size=batch_size)
print('Test loss : ', scores[0])
print('Test accuracy : ', scores[1])