-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathhatespeech.py
353 lines (324 loc) · 14.2 KB
/
hatespeech.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
import torch
import numpy as np
import os
import random
import sys
import torch
import logging
import sys
sys.path.append("../")
import requests
from torchtext import data
import pandas as pd
import numpy as np
from sentence_transformers import SentenceTransformer
from .basedataset import BaseDataset
class ModelPredictAAE:
def __init__(self, modelfile, vocabfile):
"""
Edited from https://github.com/slanglab/twitteraae
"""
self.vocabfile = vocabfile
self.modelfile = modelfile
self.load_model()
def load_model(self):
self.N_wk = np.loadtxt(self.modelfile)
self.N_w = self.N_wk.sum(1)
self.N_k = self.N_wk.sum(0)
self.K = len(self.N_k)
self.wordprobs = (self.N_wk + 1) / self.N_k
self.vocab = [
L.split("\t")[-1].strip() for L in open(self.vocabfile, encoding="utf8")
]
self.w2num = {w: i for i, w in enumerate(self.vocab)}
assert len(self.vocab) == self.N_wk.shape[0]
def infer_cvb0(self, invocab_tokens, alpha, numpasses):
doclen = len(invocab_tokens)
# initialize with likelihoods
Qs = np.zeros((doclen, self.K))
for i in range(0, doclen):
w = invocab_tokens[i]
Qs[i, :] = self.wordprobs[self.w2num[w], :]
Qs[i, :] /= Qs[i, :].sum()
lik = Qs.copy() # pertoken normalized but proportionally the same for inference
Q_k = Qs.sum(0)
for itr in range(1, numpasses):
# print "cvb0 iter", itr
for i in range(0, doclen):
Q_k -= Qs[i, :]
Qs[i, :] = lik[i, :] * (Q_k + alpha)
Qs[i, :] /= Qs[i, :].sum()
Q_k += Qs[i, :]
Q_k /= Q_k.sum()
return Q_k
def predict_lang(self, tokens, alpha=1, numpasses=5, thresh1=1, thresh2=0.2):
invocab_tokens = [w.lower() for w in tokens if w.lower() in self.w2num]
# check that at least xx tokens are in vocabulary
if len(invocab_tokens) < thresh1:
return None
# check that at least yy% of tokens are in vocabulary
elif len(invocab_tokens) / len(tokens) < thresh2:
return None
else:
posterior = self.infer_cvb0(
invocab_tokens, alpha=alpha, numpasses=numpasses
)
# posterior is probability for African-American, Hispanic, Asian, and White (in that order)
aae = (np.argmax(posterior) == 0) * 1
return aae
# https://github.com/jcpeterson/cifar-10h
class HateSpeech(BaseDataset):
""" Hatespeech dataset from Davidson et al. 2017 """
def __init__(
self,
data_dir,
embed_texts,
include_demographics,
expert_type,
device,
synth_exp_param=[0.7, 0.7],
test_split=0.2,
val_split=0.1,
batch_size=1000,
transforms=None,
):
"""
data_dir: where to save files for dataset (folder path)
embed_texts (bool): whether to embedd the texts or raw text return
include_demographics (bool): whether to include the demographics for each example, defined as either AA or not.
if True, then the data loader will return a tuple of (data, label, expert_prediction, demographics)
expert_type (str): either 'synthetic' which makes error depending on synth_exp_param for not AA or AA, or 'random_annotator' which defines human as random annotator
synth_exp_param (list): list of length 2, first element is the probability of error for AA, second is for not AA
test_split: percentage of test data
val_split: percentage of data to be used for validation (from training set)
batch_size: batch size for training
transforms: data transforms
"""
self.embed_texts = embed_texts
self.include_demographics = include_demographics
self.expert_type = expert_type
self.synth_exp_param = synth_exp_param
self.data_dir = data_dir
self.device = device
self.test_split = test_split
self.val_split = val_split
self.batch_size = batch_size
self.n_dataset = 3 # number of classes in dataset
self.train_split = 1 - test_split - val_split
self.transforms = transforms
self.generate_data()
def generate_data(self):
"""
generate data for training, validation and test sets
"""
# download dataset if it doesn't exist
if not os.path.exists(self.data_dir + "/hatespeech_labeled_data.csv"):
logging.info("Downloading HateSpeech dataset")
r = requests.get(
"https://github.com/t-davidson/hate-speech-and-offensive-language/raw/master/data/labeled_data.csv",
allow_redirects=True,
)
with open(self.data_dir + "/hatespeech_labeled_data.csv", "wb") as f:
f.write(r.content)
logging.info("Finished Downloading HateSpeech Data data")
try:
hatespeech_data = pd.read_csv(
self.data_dir + "/hatespeech_labeled_data.csv"
)
except:
logging.error("Failed to load HateSpeech data")
raise
else:
logging.info("Loading HateSpeech data")
try:
hatespeech_data = pd.read_csv(
self.data_dir + "/hatespeech_labeled_data.csv"
)
except:
logging.error("Failed to load HateSpeech data")
raise
# download aae file
if not os.path.exists(self.data_dir + "/model_count_table.txt"):
logging.info("Downloading AAE detection")
r = requests.get(
"https://github.com/slanglab/twitteraae/raw/master/model/model_count_table.txt",
allow_redirects=True,
)
with open(self.data_dir + "/model_count_table.txt", "wb") as f:
f.write(r.content)
if not os.path.exists(self.data_dir + "/model_vocab.txt"):
logging.info("Downloading AAE detection")
r = requests.get(
"https://github.com/slanglab/twitteraae/raw/master/model/model_vocab.txt",
allow_redirects=True,
)
with open(self.data_dir + "/model_vocab.txt", "wb") as f:
f.write(r.content)
self.model_file_path = self.data_dir + "/model_count_table.txt"
self.vocab_file_path = self.data_dir + "/model_vocab.txt"
self.model_aae = ModelPredictAAE(self.model_file_path, self.vocab_file_path)
# predict demographics for the deata
hatespeech_data["demographics"] = hatespeech_data["tweet"].apply(
lambda x: self.model_aae.predict_lang(x)
)
self.label_to_category = {
0: "hate_speech",
1: "offensive_language",
2: "neither",
}
# create a new column that creates a distribution over the labels
distribution_over_labels = []
for i in range(len(hatespeech_data)):
label_counts = [
hatespeech_data.iloc[i]["hate_speech"],
hatespeech_data.iloc[i]["offensive_language"],
hatespeech_data.iloc[i]["neither"],
]
label_distribution = np.array(label_counts) / sum(label_counts)
distribution_over_labels.append(label_distribution)
hatespeech_data["label_distribution"] = distribution_over_labels
human_prediction = []
if self.expert_type == "synthetic":
for i in range(len(hatespeech_data)):
if hatespeech_data.iloc[i]["demographics"] == 0:
correct_human = np.random.choice(
[0, 1], p=[1 - self.synth_exp_param[0], self.synth_exp_param[0]]
)
else:
correct_human = np.random.choice(
[0, 1], p=[1 - self.synth_exp_param[1], self.synth_exp_param[1]]
)
if correct_human:
human_prediction.append(hatespeech_data.iloc[i]["class"])
else:
human_prediction.append(np.random.choice([0, 1, 2]))
else:
for i in range(len(hatespeech_data)):
# sample from label distribution
label_distribution = hatespeech_data.iloc[i]["label_distribution"]
label = np.random.choice([0, 1, 2], p=label_distribution)
human_prediction.append(label)
hatespeech_data["human_prediction"] = human_prediction
train_x = hatespeech_data["tweet"].to_numpy()
train_y = hatespeech_data["class"].to_numpy()
train_h = hatespeech_data["human_prediction"].to_numpy()
train_d = hatespeech_data["demographics"].to_numpy()
random_seed = random.randrange(10000)
if self.embed_texts:
logging.info("Embedding texts")
# TODO: cache the embeddings, so no need to regenerate them
model = SentenceTransformer(
"sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2"
)
embeddings = model.encode(train_x)
train_x = np.array(embeddings)
test_size = int(self.test_split * len(hatespeech_data))
val_size = int(self.val_split * len(hatespeech_data))
train_size = len(hatespeech_data) - test_size - val_size
train_y = torch.tensor(train_y)
train_h = torch.tensor(train_h)
train_d = torch.tensor(train_d)
train_x = torch.from_numpy(train_x).float()
self.d = train_x.shape[1]
train_x, val_x, test_x = torch.utils.data.random_split(
train_x,
[train_size, val_size, test_size],
generator=torch.Generator().manual_seed(random_seed),
)
train_y, val_y, test_y = torch.utils.data.random_split(
train_y,
[train_size, val_size, test_size],
generator=torch.Generator().manual_seed(random_seed),
)
train_h, val_h, test_h = torch.utils.data.random_split(
train_h,
[train_size, val_size, test_size],
generator=torch.Generator().manual_seed(random_seed),
)
data_train = torch.utils.data.TensorDataset(
train_x.dataset[train_x.indices],
train_y.dataset[train_y.indices],
train_h.dataset[train_h.indices],
)
data_val = torch.utils.data.TensorDataset(
val_x.dataset[val_x.indices],
val_y.dataset[val_y.indices],
val_h.dataset[val_h.indices],
)
data_test = torch.utils.data.TensorDataset(
test_x.dataset[test_x.indices],
test_y.dataset[test_y.indices],
test_h.dataset[test_h.indices],
)
self.data_train_loader = torch.utils.data.DataLoader(
data_train, batch_size=self.batch_size, shuffle=True
)
self.data_val_loader = torch.utils.data.DataLoader(
data_val, batch_size=self.batch_size, shuffle=False
)
self.data_test_loader = torch.utils.data.DataLoader(
data_test, batch_size=self.batch_size, shuffle=False
)
else:
# NOT YET SUPPORTED, SPACY GIVES ERRORS
# pytorch text loader
self.text_field = data.Field(
sequential=True, lower=True, include_lengths=True, batch_first=True
)
label_field = data.Field(
sequential=False, use_vocab=False, batch_first=True
)
human_field = data.Field(
sequential=False, use_vocab=False, batch_first=True
)
demographics_field = data.Field(
sequential=False, use_vocab=False, batch_first=True
)
fields = [
("text", self.text_field),
("label", label_field),
("human", human_field),
] # , ('demographics', self.demographics_field)]
examples = [
data.Example.fromlist([train_x[i], train_y[i], train_h[i]], fields)
for i in range(train_x.shape[0])
]
hatespeech_dataset = data.Dataset(examples, fields)
self.text_field.build_vocab(
hatespeech_dataset,
min_freq=3,
vectors="glove.6B.100d",
unk_init=torch.Tensor.normal_,
max_size=20000,
)
label_field.build_vocab(hatespeech_dataset)
human_field.build_vocab(hatespeech_dataset)
demographics_field.build_vocab(hatespeech_dataset)
train_data, valid_data, test_data = hatespeech_dataset.split(
split_ratio=[self.train_split, self.val_split, self.test_split],
random_state=random.seed(random_seed),
)
(
self.data_train_loader,
self.data_val_loader,
self.data_test_loader,
) = data.BucketIterator.splits(
(train_data, valid_data, test_data),
batch_size=self.batch_size,
sort_key=lambda x: len(x.text),
sort_within_batch=True,
device=self.device,
)
def model_setting(self, model_nn):
# build model
INPUT_DIM = len(self.text_field.vocab)
EMBEDDING_DIM = 100 # fixed
PAD_IDX = self.text_field.vocab.stoi[self.text_field.pad_token]
# model = CNN(INPUT_DIM, EMBEDDING_DIM, N_FILTERS, FILTER_SIZES, OUTPUT_DIM, DROPOUT, PAD_IDX)
# model = CNN_rej(INPUT_DIM, EMBEDDING_DIM, N_FILTERS, FILTER_SIZES, 3, DROPOUT, PAD_IDX)
pretrained_embeddings = self.text_field.vocab.vectors
model_nn.embedding.weight.data.copy_(pretrained_embeddings)
UNK_IDX = self.text_field.vocab.stoi[self.text_field.unk_token]
model_nn.embedding.weight.data[UNK_IDX] = torch.zeros(EMBEDDING_DIM)
model_nn.embedding.weight.data[PAD_IDX] = torch.zeros(EMBEDDING_DIM)
return INPUT_DIM, EMBEDDING_DIM, PAD_IDX