-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcifar_synth.py
182 lines (165 loc) · 6 KB
/
cifar_synth.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
import math
import torch
from .basedataset import BaseDataset
import numpy as np
import os
import random
import shutil
import time
import sys
from sklearn.preprocessing import StandardScaler
import pickle
from sklearn.gaussian_process.kernels import RBF
import torch
from scipy.stats import multivariate_normal
import scipy.stats as st
import torch.optim as optim
from tqdm import tqdm
from sklearn.metrics.pairwise import rbf_kernel
from scipy.special import expit
import torch.distributions as D
import logging
import sys
sys.path.append("../")
import torchvision.datasets as datasets
from torch.autograd import Variable
from torch.utils.data import Dataset
from torch.utils.data.dataset import random_split
from torch.utils.data import DataLoader
import torchvision.transforms as transforms
import torch.nn.functional as F
from datasetsdefer.generic_dataset import GenericImageExpertDataset
class CifarSynthExpert:
"""simple class to describe our synthetic expert on CIFAR-10 k: number of classes expert can predict, n_classes: number of classes (10 for CIFAR-10)"""
def __init__(self, k, n_classes):
self.k = k
self.n_classes = n_classes
def predict(self, labels):
batch_size = len(labels)
outs = [0] * batch_size
for i in range(0, batch_size):
if labels[i] <= self.k - 1:
outs[i] = labels[i]
else:
prediction_rand = random.randint(0, self.n_classes - 1)
outs[i] = prediction_rand
return outs
class CifarSynthDataset(BaseDataset):
"""This is the CifarK synthetic expert on top of Cifar-10 from Consistent Estimators for Learning to Defer (https://arxiv.org/abs/2006.01862)"""
def __init__(
self,
expert_k,
use_data_aug,
test_split=0.2,
val_split=0.1,
batch_size=1000,
n_dataset=10,
transforms=None,
):
"""
expert_k: number of classes expert can predict
use_data_aug: whether to use data augmentation (bool)
test_split: NOT USED FOR CIFAR, since we have a fixed test set
val_split: percentage of data to be used for validation (from training set)
batch_size: batch size for training
transforms: data transforms
"""
self.expert_k = expert_k
self.use_data_aug = use_data_aug
self.n_dataset = n_dataset
self.expert_fn = CifarSynthExpert(expert_k, self.n_dataset).predict
self.test_split = test_split
self.val_split = val_split
self.batch_size = batch_size
self.train_split = 1 - test_split - val_split
self.transforms = transforms
self.generate_data()
def generate_data(self):
"""
generate data for training, validation and test sets
"""
normalize = transforms.Normalize(
mean=[x / 255.0 for x in [125.3, 123.0, 113.9]],
std=[x / 255.0 for x in [63.0, 62.1, 66.7]],
)
if self.use_data_aug:
transform_train = transforms.Compose(
[
transforms.ToTensor(),
transforms.Lambda(
lambda x: F.pad(
x.unsqueeze(0), (4, 4, 4, 4), mode="reflect"
).squeeze()
),
transforms.ToPILImage(),
transforms.RandomCrop(32),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normalize,
]
)
else:
transform_train = transforms.Compose(
[
transforms.ToTensor(),
normalize,
]
)
transform_test = transforms.Compose([transforms.ToTensor(), normalize])
if self.n_dataset == 10:
dataset = "cifar10"
elif self.n_dataset == 100:
dataset = "cifar100"
kwargs = {"num_workers": 0, "pin_memory": True}
train_dataset_all = datasets.__dict__[dataset.upper()](
"../data", train=True, download=True, transform=transform_train
)
train_size = int((1 - self.val_split) * len(train_dataset_all))
val_size = len(train_dataset_all) - train_size
train_dataset, val_dataset = torch.utils.data.random_split(
train_dataset_all, [train_size, val_size]
)
test_dataset = datasets.__dict__["cifar10".upper()](
"../data", train=False, transform=transform_test, download=True
)
dataset_train = GenericImageExpertDataset(
np.array(train_dataset.dataset.data)[train_dataset.indices],
np.array(train_dataset.dataset.targets)[train_dataset.indices],
self.expert_fn(
np.array(train_dataset.dataset.targets)[train_dataset.indices]
),
transform_train,
)
dataset_val = GenericImageExpertDataset(
np.array(val_dataset.dataset.data)[val_dataset.indices],
np.array(val_dataset.dataset.targets)[val_dataset.indices],
self.expert_fn(np.array(val_dataset.dataset.targets)[val_dataset.indices]),
transform_test,
)
dataset_test = GenericImageExpertDataset(
test_dataset.data,
test_dataset.targets,
self.expert_fn(test_dataset.targets),
transform_test,
)
self.data_train_loader = DataLoader(
dataset=dataset_train,
batch_size=self.batch_size,
shuffle=True,
num_workers=0,
pin_memory=True,
)
self.data_val_loader = DataLoader(
dataset=dataset_val,
batch_size=self.batch_size,
shuffle=False,
num_workers=0,
pin_memory=True,
)
self.data_test_loader = DataLoader(
dataset=dataset_test,
batch_size=self.batch_size,
shuffle=False,
num_workers=0,
pin_memory=True,
)