-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathbroward.py
165 lines (152 loc) · 6.36 KB
/
broward.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import torch
import os
import random
import sys
from sklearn.preprocessing import StandardScaler
import torch
import pandas as pd
import logging
import sys
sys.path.append("../")
import zipfile
import requests
from .basedataset import BaseDataset
class BrowardDataset(BaseDataset):
"""Compas dataset with human judgements for 1000 points"""
def __init__(
self, data_dir, test_split=0.2, val_split=0.1, batch_size=1000, transforms=None
):
"""
https://farid.berkeley.edu/downloads/publications/scienceadvances17/allData.zip
https://www.science.org/doi/10.1126/sciadv.aao5580
data_dir: where to save files for model
test_split: percentage of test data
val_split: percentage of data to be used for validation (from training set)
batch_size: batch size for training
transforms: data transforms
"""
self.data_dir = data_dir
self.test_split = test_split
self.val_split = val_split
self.batch_size = batch_size
self.n_dataset = 2
self.train_split = 1 - test_split - val_split
self.transforms = transforms
self.generate_data()
def generate_data(self):
"""
generate data for training, validation and test sets
"""
# check if file already exists
if not os.path.exists(self.data_dir + "/allDataBroward"):
logging.info("Downloading Broward data")
r = requests.get(
"https://farid.berkeley.edu/downloads/publications/scienceadvances17/allData.zip",
allow_redirects=True,
)
with open(self.data_dir + "/allData.zip", "wb") as f:
f.write(r.content)
# create data directory
if not os.path.exists(self.data_dir + "/allDataBroward"):
os.makedirs(self.data_dir + "/allDataBroward")
# python unzip
with zipfile.ZipFile(self.data_dir + "/allData.zip", "r") as zip_ref:
zip_ref.extractall(self.data_dir + "/allDataBroward")
os.remove(self.data_dir + "/allData.zip")
logging.info("Finished Downloading Broward data")
try:
broward_data = pd.read_csv(
self.data_dir + "/allDataBroward/BROWARD_CLEAN_SUBSET.csv"
)
mturk_data = pd.read_csv(
self.data_dir + "/allDataBroward/MTURK_RACE.csv"
)
except:
logging.error("Failed to load Broward data")
raise
else:
logging.info("Loading Broward data")
try:
broward_data = pd.read_csv(
self.data_dir + "/allDataBroward/BROWARD_CLEAN_SUBSET.csv"
)
mturk_data = pd.read_csv(
self.data_dir + "/allDataBroward/MTURK_RACE.csv"
)
except:
logging.error("Failed to load Broward data")
raise
broward_data = broward_data.drop(["block_num", "id"], axis=1)
train_y = broward_data.two_year_recid.to_numpy()
broward_data = broward_data.drop(["two_year_recid"], axis=1)
train_x = broward_data.to_numpy()
# normalize data
scaler = StandardScaler()
scaler.fit(train_x)
train_x = scaler.transform(train_x)
human_predictions = []
mturk_data = mturk_data.drop(["mTurk_code"], axis=1)
for i in range(1, len(mturk_data)):
# get all columns
row = mturk_data.iloc[i]
# only keep the columns that are not nan
row = row[row.notna()]
# get a random prediction
random_sample = row.sample(n=1).values[0]
most_common = row.value_counts().idxmax()
# can choose either here
if most_common == 1:
human_predictions.append(train_y[i - 1])
else:
human_predictions.append(1 - train_y[i - 1])
human_predictions = torch.tensor(human_predictions)
train_y = torch.tensor(train_y)
train_x = torch.from_numpy(train_x).float()
self.total_samples = len(train_x)
self.d = len(train_x[0])
random_seed = random.randrange(10000)
train_size = int(self.train_split * self.total_samples)
val_size = int(self.val_split * self.total_samples)
test_size = self.total_samples - train_size - val_size
self.train_x, self.val_x, self.test_x = torch.utils.data.random_split(
train_x,
[train_size, val_size, test_size],
generator=torch.Generator().manual_seed(random_seed),
)
self.train_y, self.val_y, self.test_y = torch.utils.data.random_split(
train_y,
[train_size, val_size, test_size],
generator=torch.Generator().manual_seed(random_seed),
)
self.train_h, self.val_h, self.test_h = torch.utils.data.random_split(
human_predictions,
[train_size, val_size, test_size],
generator=torch.Generator().manual_seed(random_seed),
)
logging.info("train size: ", len(self.train_x))
logging.info("val size: ", len(self.val_x))
logging.info("test size: ", len(self.test_x))
self.data_train = torch.utils.data.TensorDataset(
self.train_x.dataset.data[self.train_x.indices],
self.train_y.dataset.data[self.train_y.indices],
self.train_h.dataset.data[self.train_h.indices],
)
self.data_val = torch.utils.data.TensorDataset(
self.val_x.dataset.data[self.val_x.indices],
self.val_y.dataset.data[self.val_y.indices],
self.val_h.dataset.data[self.val_h.indices],
)
self.data_test = torch.utils.data.TensorDataset(
self.test_x.dataset.data[self.test_x.indices],
self.test_y.dataset.data[self.test_y.indices],
self.test_h.dataset.data[self.test_h.indices],
)
self.data_train_loader = torch.utils.data.DataLoader(
self.data_train, batch_size=self.batch_size, shuffle=True
)
self.data_val_loader = torch.utils.data.DataLoader(
self.data_val, batch_size=self.batch_size, shuffle=True
)
self.data_test_loader = torch.utils.data.DataLoader(
self.data_test, batch_size=self.batch_size, shuffle=True
)