-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdist_pretrain.py
431 lines (384 loc) · 20.6 KB
/
dist_pretrain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
from cgi import print_directory
import os
import gc
import argparse
import json
import random
import math
import random
from functools import reduce
import numpy as np
import pandas as pd
from scipy import sparse
from sklearn.model_selection import train_test_split
import torch
from torch import nn
from torch.optim import Adam
from torch.nn import functional as F
from torch.utils.data import DataLoader, Dataset
from torch.utils.data.distributed import DistributedSampler
from torch.utils.tensorboard import SummaryWriter
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.nn.modules.utils import consume_prefix_in_state_dict_if_present
import torch.distributed as dist
import torch.multiprocessing as mp
from performer_pytorch import PerformerLM
import scanpy as sc
import anndata as ad
from utils import *
from tqdm import tqdm
from datetime import datetime
from time import time
from collections import OrderedDict
def main():
parser = argparse.ArgumentParser()
parser.add_argument("--master_addr", type=str, default="127.0.0.1", help='Master addr for dist training.')
parser.add_argument("--master_port", type=str, default="8500", help='Master port for dist training.')
parser.add_argument("--world_size", type=int, default=2, help='Number of GPUs.')
parser.add_argument("--bin_num", type=int, default=5, help='Number of bins.')
parser.add_argument("--gene_num", type=int, default=None, help='Number of genes.') # 16906, if not supplied, will take the number of genes in the supplied training data
parser.add_argument("--epochs", type=int, default=100, help='Number of epochs.')
parser.add_argument("--seed", type=int, default=2021, help='Random seed.')
parser.add_argument("--batch_size", type=int, default=3, help='Batch size.')
parser.add_argument("--learning_rate", type=float, default=1e-4, help='Learning rate.')
parser.add_argument("--grad_acc", type=int, default=60, help='Number of gradient accumulation.')
parser.add_argument("--valid_every", type=int, default=1, help='Number of training epochs between twice validation.')
parser.add_argument("--mask_prob", type=float, default=0.15, help='Probability of masking.')
parser.add_argument("--replace_prob", type=float, default=0.9, help='Probability of replacing with [MASK] token for masking.')
parser.add_argument("--pos_embed_g2v", action='store_true', help='Using Gene2vec encoding or not (default no unless this arg is supplied).')
parser.add_argument("--sin_emb_wavelength", type=float, default = None, help='Wavelength of sinusoidal expression encodings. Defaults to bin_num.')
parser.add_argument("--small_geneset", action='store_true', help='Train a smaller model. Currently implemented as including genes present in at least 5% of cells.')
parser.add_argument("--g2v_file", type=str, default='/data/rna_rep_learning/scBERT/gene2vec_16906.npy', help='File containing Gene2vec embeddings')
parser.add_argument("--data_path", type=str, default='/data/rna_rep_learning/scBERT/panglao_human.h5ad', help='Path of data for pretraining.')
parser.add_argument("--ckpt_dir", type=str, default='./ckpts/', help='Directory of checkpoint to save.')
parser.add_argument("--model_name", type=str, default='panglao_pretrain', help='Model name used for saving model.')
parser.add_argument("--pretrained_ckpt", type=str, default=None, help='Pretrained checkpoint path.')
parser.add_argument("--pred_continuous", action="store_true", help='If this arg is provided, embed continuous expression values and predict continuous expression values during masking, instead of bucketed.')
parser.add_argument("--debug", action="store_true", help="Debug setting: saves to new dir.")
args = parser.parse_args()
model_name = args.model_name
# Control sources of randomness
torch.manual_seed(args.seed)
random.seed(args.seed)
np.random.seed(args.seed)
# If continuing training from checkpoint
if args.pretrained_ckpt and not args.debug:
ckpt_dir = os.path.dirname(args.pretrained_ckpt)
else:
timestamp = datetime.now().strftime("%Y-%b-%d-%H:%M:%S")
ckpt_dir = os.path.join(args.ckpt_dir, model_name, timestamp)
# Create checkpoint dir if doesn't exist
# NOTE: Done before distributing to avoid process collision
if not (os.path.exists(ckpt_dir)):
os.makedirs(ckpt_dir)
print("Checkpoint dir: ", ckpt_dir)
mp.spawn(
distributed_pretrain,
args=(args, ckpt_dir, model_name),
nprocs=args.world_size,
join=True,
)
def distributed_pretrain(rank, args, ckpt_dir, model_name):
SEED = args.seed
EPOCHS = args.epochs
BATCH_SIZE = args.batch_size
GRADIENT_ACCUMULATION = args.grad_acc
LEARNING_RATE = args.learning_rate
VALIDATE_EVERY = args.valid_every
CLASS = args.bin_num + 2
POS_EMBED_USING = args.pos_embed_g2v
if args.sin_emb_wavelength:
SIN_EMB_WAVELENGTH = args.sin_emb_wavelength
else:
SIN_EMB_WAVELENGTH = args.bin_num
MASK_PROB = args.mask_prob
REPLACE_PROB = args.replace_prob
PRED_CONTINUOUS = args.pred_continuous
RANDOM_TOKEN_PROB = 0.
MASK_TOKEN_ID = CLASS - 1
PAD_TOKEN_ID = CLASS - 1
MASK_IGNORE_TOKEN_IDS = [0]
is_master = rank == 0
master_addr = args.master_addr
master_port = args.master_port
world_size = args.world_size
### HELPER FUNCTIONS AND DATASET CLASS FROM ORIGINAL CODE ###
# get the random prob matrix and True means smaller than prob threshold
def prob_mask_like(t, prob):
return torch.zeros_like(t).float().uniform_(0, 1) < prob
# get the mask matrix which cannot be masked
def mask_with_tokens(t, token_ids):
init_no_mask = torch.full_like(t, False, dtype=torch.bool)
mask = reduce(lambda acc, el: acc | (t == el), token_ids, init_no_mask)
return mask
def get_mask_subset_with_prob(mask, prob):
batch, seq_len, device = *mask.shape, mask.device
max_masked = math.ceil(prob * seq_len) # num of mask of a single sequence in average
num_tokens = mask.sum(dim=-1, keepdim=True) # num of pure tokens of each sequence except special tokens
mask_excess = torch.cat((torch.zeros(0), torch.arange(mask.size(-1)).repeat(mask.size(0)))).reshape(mask.size(0),mask.size(-1)).to(device)
mask_excess = (mask_excess >= (num_tokens * prob).ceil()) # only 15% of pure tokens can be masked
mask_excess = mask_excess[:, :max_masked] # get difference between 15% of pure tokens and 15% of all tokens
rand = torch.rand((batch, seq_len), device=device).masked_fill(~mask, -1e9) # rand (0-1) as prob, special token use -1e9
_, sampled_indices = rand.topk(max_masked, dim=-1) # get index of topk prob to mask
sampled_indices = (sampled_indices + 1).masked_fill_(mask_excess, 0) # delete difference of mask not pure
new_mask = torch.zeros((batch, seq_len + 1), device=device) # get (batch, seq_len) shape zero matrix
new_mask.scatter_(-1, sampled_indices, 1) # set masks in zero matrix as 1
return new_mask[:, 1:].bool() # the final mask, True is mask
def data_mask(
data,
mask_prob = MASK_PROB,
replace_prob = REPLACE_PROB,
num_tokens = None,
random_token_prob = RANDOM_TOKEN_PROB,
mask_token_id = MASK_TOKEN_ID,
pad_token_id = PAD_TOKEN_ID,
mask_ignore_token_ids = MASK_IGNORE_TOKEN_IDS
):
mask_ignore_token_ids = set([*mask_ignore_token_ids, pad_token_id])
# do not mask [pad] tokens, or any other tokens in the tokens designated to be excluded ([cls], [sep])
# also do not include these special tokens in the tokens chosen at random
no_mask = mask_with_tokens(data, mask_ignore_token_ids) # ignore_token as True, will not be masked later
mask = get_mask_subset_with_prob(~no_mask, mask_prob) # get the True/False mask matrix
# get mask indices
## mask_indices = torch.nonzero(mask, as_tuple=True) # get the index of mask(nonzero value of mask matrix)
# mask input with mask tokens with probability of `replace_prob` (keep tokens the same with probability 1 - replace_prob)
masked_input = data.clone().detach()
# if random token probability > 0 for mlm
if random_token_prob > 0:
assert num_tokens is not None, 'num_tokens keyword must be supplied when instantiating MLM if using random token replacement'
random_token_prob = prob_mask_like(data, random_token_prob) # get the mask matrix of random token replace
random_tokens = torch.randint(0, num_tokens, data.shape, device=data.device) # generate random token matrix with the same shape as input
random_no_mask = mask_with_tokens(random_tokens, mask_ignore_token_ids) # not masked matrix for the random token matrix
random_token_prob &= ~random_no_mask # get the pure mask matrix of random token replace
random_indices = torch.nonzero(random_token_prob, as_tuple=True) # index of random token replace
masked_data[random_indices] = random_tokens[random_indices] # replace some tokens by random token
# [mask] input
replace_prob = prob_mask_like(data, replace_prob) # get the mask matrix of token being masked
masked_input = masked_input.masked_fill(mask * replace_prob, mask_token_id) # get the data has been masked by mask_token
# mask out any tokens to padding tokens that were not originally going to be masked
labels = data.masked_fill(~mask, pad_token_id) # the label of masked tokens; will have "pad_token_id" everywhere that was not masked (eg. of pad_token_id having overloaded uses...)
return masked_input, labels
def MSEloss(preds, target, reduction = 'mean', ignore_index = MASK_TOKEN_ID):
"""
Created our own function to allow for an "ignore_index" argument
"""
if not (target.size() == preds.size()):
print(
"Using a target size ({}) that is different to the input size ({}). "
#"This will likely lead to incorrect results due to broadcasting. "
"Please ensure they have the same size.".format(target.size(), preds.size())
)
if reduction != "mean":
print("WARNING: mean MSEloss is automatically calculated, even though you specified a different reduction")
#expanded_preds, expanded_target = torch.broadcast_tensors(preds, target)
diff = (preds-target)*(target!=ignore_index) #dont count loss from values that were not masked
return torch.mean(diff**2)
class SCDataset(Dataset):
def __init__(self, data, use_continuous=False):
super().__init__()
self.data = data
self.use_continuous = use_continuous
def __getitem__(self, index):
rand_start = random.randint(0, self.data.shape[0]-1)
full_seq = self.data[rand_start].toarray()[0]
full_seq[full_seq > (CLASS - 2)] = CLASS - 2
full_seq = torch.from_numpy(full_seq)
if(not self.use_continuous):
full_seq = full_seq.long() #long() converts to int64
full_seq = torch.cat((full_seq, torch.tensor([0]))).to(device)
return full_seq
def __len__(self):
return self.data.shape[0]
cur_time = time()
setup_process(rank, master_addr, master_port, world_size)
device = torch.device("cuda:{}".format(rank))
print("Set up distributed processes...")
data = sc.read_h5ad(args.data_path)
if args.debug:
debug_seq_len = 5000
data = data[:50,:debug_seq_len]
GRADIENT_ACCUMULATION = 1
elif args.small_geneset:
sc.pp.filter_genes(data, min_cells=0.05*len(data))
print("Filtered data to include {} genes present in at least 5% of cells".format(data.shape[1]))
data = data.X
if args.gene_num is not None:
SEQ_LEN = args.gene_num + 1
else:
SEQ_LEN = data.shape[1] + 1 # num_genes + 1
data_train, data_val = train_test_split(data, test_size=0.05, random_state=SEED)
train_dataset = SCDataset(data_train, PRED_CONTINUOUS)
val_dataset = SCDataset(data_val, PRED_CONTINUOUS)
train_sampler = DistributedSampler(train_dataset)
val_sampler = SequentialDistributedSampler(val_dataset, batch_size=BATCH_SIZE, world_size=world_size)
train_loader = DataLoader(train_dataset, batch_size=BATCH_SIZE, sampler=train_sampler)
val_loader = DataLoader(val_dataset, batch_size=BATCH_SIZE, sampler=val_sampler)
print("Loaded data...")
# model
model = PerformerLM(
num_tokens = CLASS,
dim = 200,
depth = 6,
max_seq_len = SEQ_LEN,
heads = 10,
local_attn_heads = 0,
g2v_position_emb = POS_EMBED_USING,
g2v_file = args.g2v_file,
pred_continuous = PRED_CONTINUOUS,
sin_emb_wavelength = SIN_EMB_WAVELENGTH,
)
# optimizer
optimizer = Adam(model.parameters(), lr=LEARNING_RATE)
# learning rate scheduler
scheduler = CosineAnnealingWarmupRestarts(
optimizer,
first_cycle_steps=15,
cycle_mult=2,
max_lr=LEARNING_RATE,
min_lr=1e-6,
warmup_steps=5,
gamma=0.9
)
model.to(device)
# If continuing training from checkpoint
if args.pretrained_ckpt:
# Load checkpoint onto correct rank
checkpoint = torch.load(args.pretrained_ckpt, map_location=device)
consume_prefix_in_state_dict_if_present(checkpoint['model_state_dict'], "module.")
model.load_state_dict(checkpoint['model_state_dict'])
# Load optimizer
optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
# Load scheduler
scheduler.load_state_dict(checkpoint['scheduler_state_dict'])
cur_epoch = checkpoint['epoch']
else:
cur_epoch = 0
model = DDP(model, device_ids=[device], output_device=device)
print("Loaded model...")
if PRED_CONTINUOUS:
loss_fn = MSEloss
else:
loss_fn = nn.CrossEntropyLoss(ignore_index = PAD_TOKEN_ID, reduction='mean').to(device)
softmax = nn.Softmax(dim=-1)
dist.barrier()
writer = SummaryWriter(os.path.join(ckpt_dir, 'tensorboard'))
for i in range(cur_epoch + 1, EPOCHS + 1):
train_loader.sampler.set_epoch(i)
model.train()
dist.barrier()
running_loss = 0.0
cum_acc = 0.0
cum_impute_error = 0.0
for index, data in tqdm(enumerate(train_loader)):
index += 1
data = data.to(device)
data, labels = data_mask(data)
if index % GRADIENT_ACCUMULATION != 0:
with model.no_sync():
logits = model(data) #should be size batch_size x seq_len x num_bins (if PRED_CONTINUOUS: batch_size x seq_len x 1)
loss = loss_fn(logits.transpose(1, 2).squeeze(dim=1), labels) / GRADIENT_ACCUMULATION #squeeze needed for MSEloss, shouldn't affect x-ent loss
loss.backward()
if index % GRADIENT_ACCUMULATION == 0:
logits = model(data)
loss = loss_fn(logits.transpose(1, 2).squeeze(dim=1), labels) / GRADIENT_ACCUMULATION
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), int(1e2))
optimizer.step()
optimizer.zero_grad()
running_loss += loss.item()
if PRED_CONTINUOUS:
final = logits.squeeze()
impute_error = ((labels != PAD_TOKEN_ID) * torch.abs(final - labels)).sum(dim=-1)
cum_impute_error += impute_error.median().item() #keep track of median imputation error per batch; report avg across batches in epoch
else: #calculating 0-1 accuracy only applies with categorical preds
final = softmax(logits)[..., 1:-1]
final = final.argmax(dim=-1) + 1
pred_num = (labels != PAD_TOKEN_ID).sum(dim=-1)
correct_num = ((labels != PAD_TOKEN_ID) * (final == labels)).sum(dim=-1)
cum_acc += torch.true_divide(correct_num, pred_num).mean().item()
if PRED_CONTINUOUS:
epoch_impute_error = cum_impute_error / index
epoch_impute_error = get_reduced(epoch_impute_error, device, 0, world_size)
epoch_acc =-1
else:
epoch_acc = 100 * cum_acc / index
epoch_acc = get_reduced(epoch_acc, device, 0, world_size)
epoch_abs_error = -1
epoch_loss = running_loss / index
epoch_loss = get_reduced(epoch_loss, device, 0, world_size)
if is_master:
if PRED_CONTINUOUS:
print(f' == Epoch: {i} | Training Loss: {epoch_loss:.6f} | Accuracy: {epoch_acc:6.4f}% | Median Imputation Error : {epoch_impute_error:.4f} ==')
else:
print(f' == Epoch: {i} | Training Loss: {epoch_loss:.6f} | Accuracy: {epoch_acc:6.4f}% ==')
dist.barrier()
scheduler.step()
if i % VALIDATE_EVERY == 0:
model.eval()
dist.barrier()
running_loss = 0.0
running_error = 0.0
predictions = []
truths = []
with torch.no_grad():
for index, data in enumerate(val_loader):
index += 1
data = data.to(device)
data, labels = data_mask(data)
logits = model(data)
loss = loss_fn(logits.transpose(1, 2).squeeze(dim=1), labels)
running_loss += loss.item()
softmax = nn.Softmax(dim=-1)
if PRED_CONTINUOUS:
final = logits.squeeze(dim=2) #(include 'dim' in case at the end of loop, batchsize=1)
else:
final = softmax(logits)[..., 1:-1]
final = final.argmax(dim=-1) + 1
predictions.append(final)
truths.append(labels)
del data, labels, logits, final
# gather
predictions = distributed_concat(torch.cat(predictions, dim=0), len(val_sampler.dataset), world_size)
truths = distributed_concat(torch.cat(truths, dim=0), len(val_sampler.dataset), world_size)
val_num = (truths != PAD_TOKEN_ID).sum(dim=-1)
# Epoch loss
val_loss = running_loss / index
val_loss = get_reduced(val_loss, device, 0, world_size)
# accuracy (categorical output) or absolute error (continuous output)
if PRED_CONTINUOUS:
val_impute_error = ((truths != PAD_TOKEN_ID) * torch.abs(predictions - truths)).sum(dim=-1).median().item()
val_acc = -1
else:
correct_num = ((truths != PAD_TOKEN_ID) * (predictions == truths)).sum(dim=-1)
val_acc = 100 * (correct_num / val_num).mean().item()
val_impute_error = -1
if is_master:
if PRED_CONTINUOUS:
print(f' == Epoch: {i} | Validation Loss: {val_loss:.6f} | Accuracy: {val_acc:6.4f}% | Median Imputation Error: {val_impute_error:.4f} ==')
else:
print(f' == Epoch: {i} | Validation Loss: {val_loss:.6f} | Accuracy: {val_acc:6.4f}% ==')
duration = time() - cur_time
cur_time = time()
writer.add_scalar('Epoch duration', duration, i)
writer.add_scalar('Loss/val', val_loss, i)
writer.add_scalar('Loss/val', val_loss, i)
if PRED_CONTINUOUS:
writer.add_scalar('Median imputation error/train', epoch_impute_error, i)
writer.add_scalar('Median imputation error/val', val_impute_error, i)
else:
writer.add_scalar('Accuracy/train', epoch_acc, i)
writer.add_scalar('Accuracy/val', val_acc, i)
del predictions, truths
if is_master:
save_ckpt(i, model, optimizer, scheduler, epoch_loss, model_name, ckpt_dir)
cleanup()
def setup_process(rank, master_addr, master_port, world_size, backend="nccl"):
print(f"Setting up process: rank={rank} world_size={world_size} backend={backend}.")
print(f"master_addr={master_addr} master_port={master_port}")
os.environ["MASTER_ADDR"] = master_addr
os.environ["MASTER_PORT"] = master_port
dist.init_process_group(backend=backend, rank=rank, world_size=world_size)
def cleanup():
dist.destroy_process_group()
if __name__=="__main__":
main()