We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
I was trying to follow this tutorial Detectron2 Beginner's Tutorial using ResNeSt 200 instead of Mask RCNN to perform instance segmentation.
In order to get the configs and weights of the model I used the code proposed in the following issue #25 :
cfg = get_cfg() cfg.merge_from_file('./configs/COCO-InstanceSegmentation/mask_cascade_rcnn_ResNeSt_200_FPN_dcn_syncBN_all_tricks_3x.yaml') cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.5 # set threshold for this model cfg.MODEL.WEIGHTS = "https://s3.us-west-1.wasabisys.com/resnest/detectron/resnest200_detectron-02644020.pth" predictor = DefaultPredictor(cfg) outputs = predictor(im) print(outputs["instances"].pred_classes) print(outputs["instances"].pred_boxes)
Running the code above returns empty tensors when performing inference:
tensor([], device='cuda:0', dtype=torch.int64) Boxes(tensor([], device='cuda:0', size=(0, 4)))
Hence, there is no generated mask:
The model should return an image masked and labeled. If the model is instantiated through the model zoo the results are as expected:
cfg = get_cfg() cfg.merge_from_file("./configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml") cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.5 cfg.MODEL.WEIGHTS = model_zoo.get_checkpoint_url("COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml") print(outputs["instances"].pred_classes) print(outputs["instances"].pred_boxes)
Results:
tensor([17, 0, 0, 0, 0, 0, 0, 0, 25, 0, 25, 25, 0, 0, 24], device='cuda:0') Boxes(tensor([[126.6035, 244.8977, 459.8291, 480.0000], [251.1083, 157.8127, 338.9731, 413.6379], [114.8496, 268.6864, 148.2352, 398.8111], [ 0.8217, 281.0327, 78.6072, 478.4210], [ 49.3954, 274.1229, 80.1545, 342.9808], [561.2248, 271.5816, 596.2755, 385.2552], [385.9072, 270.3125, 413.7130, 304.0397], [515.9295, 278.3744, 562.2792, 389.3802], [335.2409, 251.9167, 414.7491, 275.9375], [350.9300, 269.2060, 386.0984, 297.9081], [331.6292, 230.9996, 393.2759, 257.2009], [510.7349, 263.2656, 570.9865, 295.9194], [409.0841, 271.8646, 460.5582, 356.8722], [506.8767, 283.3257, 529.9403, 324.0392], [594.5663, 283.4820, 609.0577, 311.4124]], device='cuda:0'))
Masked image:
After running the following command:
wget -nc -q https://github.com/facebookresearch/detectron2/raw/master/detectron2/utils/collect_env.py && python collect_env.py
I get environment details as follows:
------------------------ --------------------------------------------------------------- sys.platform linux Python 3.6.9 (default, Jul 17 2020, 12:50:27) [GCC 8.4.0] numpy 1.18.5 detectron2 0.1.1 @/content/detectron2-ResNeSt/detectron2 detectron2 compiler GCC 7.5 detectron2 CUDA compiler 10.1 detectron2 arch flags sm_75 DETECTRON2_ENV_MODULE <not set> PyTorch 1.6.0+cu101 @/usr/local/lib/python3.6/dist-packages/torch PyTorch debug build False CUDA available True GPU 0 Tesla T4 CUDA_HOME /usr/local/cuda NVCC Cuda compilation tools, release 10.1, V10.1.243 Pillow 7.0.0 torchvision 0.7.0+cu101 @/usr/local/lib/python3.6/dist-packages/torchvision torchvision arch flags sm_35, sm_50, sm_60, sm_70, sm_75 cv2 4.1.2 ------------------------ --------------------------------------------------------------- PyTorch built with: - GCC 7.3 - C++ Version: 201402 - Intel(R) Math Kernel Library Version 2019.0.5 Product Build 20190808 for Intel(R) 64 architecture applications - Intel(R) MKL-DNN v1.5.0 (Git Hash e2ac1fac44c5078ca927cb9b90e1b3066a0b2ed0) - OpenMP 201511 (a.k.a. OpenMP 4.5) - NNPACK is enabled - CPU capability usage: AVX2 - CUDA Runtime 10.1 - NVCC architecture flags: -gencode;arch=compute_37,code=sm_37;-gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75 - CuDNN 7.6.3 - Magma 2.5.2 - Build settings: BLAS=MKL, BUILD_TYPE=Release, CXX_FLAGS= -Wno-deprecated -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -fopenmp -DNDEBUG -DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DUSE_VULKAN_WRAPPER -O2 -fPIC -Wno-narrowing -Wall -Wextra -Werror=return-type -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wno-sign-compare -Wno-unused-parameter -Wno-unused-variable -Wno-unused-function -Wno-unused-result -Wno-unused-local-typedefs -Wno-strict-overflow -Wno-strict-aliasing -Wno-error=deprecated-declarations -Wno-stringop-overflow -Wno-error=pedantic -Wno-error=redundant-decls -Wno-error=old-style-cast -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Wno-stringop-overflow, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, USE_CUDA=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=ON, USE_NNPACK=ON, USE_OPENMP=ON, USE_STATIC_DISPATCH=OFF,
The text was updated successfully, but these errors were encountered:
Same problem if you find solution please let me know thanks
Sorry, something went wrong.
No branches or pull requests
Instructions To Reproduce the Issue:
I was trying to follow this tutorial Detectron2 Beginner's Tutorial using ResNeSt 200 instead of Mask RCNN to perform instance segmentation.
In order to get the configs and weights of the model I used the code proposed in the following issue #25 :
Running the code above returns empty tensors when performing inference:
Hence, there is no generated mask:
Expected behavior:
The model should return an image masked and labeled. If the model is instantiated through the model zoo the results are as expected:
Results:
Masked image:
Environment:
After running the following command:
I get environment details as follows:
The text was updated successfully, but these errors were encountered: