You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
计划通过MultiQueryRetriever来提升效果,找到了MultiQueryRetriever示例:
from langchain.chat_models import ChatOpenAI
from langchain.retrievers.multi_query import MultiQueryRetriever
question = "What are the approaches to Task Decomposition?"
llm = ChatOpenAI(temperature=0)
retriever_from_llm = MultiQueryRetriever.from_llm(
retriever=vectordb.as_retriever(), llm=llm
)
To implement MultiQueryRetriever in the knowledge_base_chat.py file, you will need to make several modifications. Here's a general guide on what to change:
Import the Necessary Modules: Add the imports for MultiQueryRetriever and any other necessary modules at the beginning of the file.
Initialize the LLM: Set up the ChatOpenAI model, which will be used by the MultiQueryRetriever.
llm=ChatOpenAI(temperature=0)
Configure the Retriever: Replace the existing document retrieval logic with MultiQueryRetriever. You will need to convert your vectordb object to a retriever and then use it to initialize MultiQueryRetriever.
Adjust the Flow: Ensure that the rest of the code that processes the retrieved documents and generates responses is compatible with the output from MultiQueryRetriever.
These changes will integrate MultiQueryRetriever into your knowledge_base_chat.py file, allowing you to enhance the retrieval process with multiple queries. Make sure to test the implementation thoroughly to ensure it works as expected.
计划通过MultiQueryRetriever来提升效果,找到了MultiQueryRetriever示例:
from langchain.chat_models import ChatOpenAI
from langchain.retrievers.multi_query import MultiQueryRetriever
question = "What are the approaches to Task Decomposition?"
llm = ChatOpenAI(temperature=0)
retriever_from_llm = MultiQueryRetriever.from_llm(
retriever=vectordb.as_retriever(), llm=llm
)
Set logging for the queries
import logging
logging.basicConfig()
logging.getLogger("langchain.retrievers.multi_query").setLevel(logging.INFO)
unique_docs = retriever_from_llm.get_relevant_documents(query=question)
len(unique_docs)
具体需要修改项目中knowledge_base_chat.py的哪些内容来实现MultiQueryRetriever?
The text was updated successfully, but these errors were encountered: