-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathsamplePrior2D.py
65 lines (58 loc) · 2.21 KB
/
samplePrior2D.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
#Sample 2D functions from a Gaussian Process RBF prior and save outputs as a json file
#Charley Wu 2017
import numpy as np
import GPy
import json
from matplotlib import pyplot as plt
from sklearn import preprocessing
plt.ioff()
#function to sample values from a gaussian process kernel
def samplePrior(k, imageFileName, xmin=0, xmax=10, normalize = True):
"""Samples a function from a gaussian process kernel (k), where xmin and xmax specify the square bounds of the 2D function, and normalize=True scales the payoffs between 0 and 1 """
#Create grid using xmin and xmax
xx, yy = np.mgrid[xmin:xmax+1, xmin:xmax+1]
X = np.vstack((xx.flatten(), yy.flatten())).T
K = k.K(X) #compute covariance matrix of x X
s = np.random.multivariate_normal(np.zeros(X.shape[0]), K) #GP prior distribution
#set min-max range for scaler
min_max_scaler = preprocessing.MinMaxScaler(feature_range=(0,1))
#scale to range
if normalize==True:
s = min_max_scaler.fit_transform(s)
#plot figure
fig = plt.figure()
plt.matshow(s.reshape(*xx.shape), interpolation='none', cmap=plt.get_cmap('OrRd'))
plt.xticks(np.arange(0.5,10.5,1), [])
plt.yticks(np.arange(0.5,10.5,1), [])
plt.tick_params(axis='both', which='both',length=0)
plt.grid(color='#0082C1', linestyle='-')
#save fig
plt.savefig(imageFileName, bbox_inches='tight', format='pdf')
plt.close(fig)
#convert into JSON object
jsonData = {}
counter = 0
for x1 in range(xmin,xmax+1):
for x2 in range(xmin,xmax+1):
jsonData[counter] = {'x1':x1, 'x2':x2, 'y':s[counter]}
counter+=1
return jsonData, fig
#Create experiment data
#define kernels
kernel1 = GPy.kern.RBF(input_dim=2, variance=1, lengthscale=1)
kernel2 = GPy.kern.RBF(input_dim=2, variance=1, lengthscale=2)
kernelList = [kernel1, kernel2]
filenames = ['experiment2D/kernel1.json', 'experiment2D/kernel2.json']
#number of samples
samples = 20
#Sample and save output data and plots
for n in range(2):
outputData = {}
#sample payout matrix and also create plots
for sample in range(samples):
figName = 'experiment2D/images/kernel%i.%i.pdf' % (n, sample)
(outputData[sample], figure) = samplePrior(kernelList[n], figName)
#save payout matrix
filename = filenames[n]
with open(filename, 'w') as fp:
json.dump(outputData, fp)