-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathraman.hpp
719 lines (595 loc) · 22.5 KB
/
raman.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
/*
* Raman (Range Manipulation) C++ Range Manipulation Library:
* Dependency free, header-only, low overhead.
*
* Every usage of Raman begins by wrapping your range (be it a container or a
* pair of iterators) with raman::From(). You may use any STL or STL-like
* container / iterator. You may also pass an rvalue to raman::From(), in which
* case it will take ownership of the container.
*
* Once wrapped, you may use any of the utility functions below to manipulate
* your ranges, like Where(), AddressOf(), Sort(), Reverse(), etc.
*
* You may use Raman in range-based for loop, or use the implicit cast operator
* to cast the range to any container.
*
* Examples:
*
* (0) Tests:
* There are many, many examples in tests.cpp. They are mostly easy to read.
*
* (1) Filtering:
* Iterate over entries larger than 2:
* vector<int> input = ...;
* for (int i : raman::From(input).Where([](int j) { return j > 2; })) { ... }
*
* (2) Sort, Unique, Reverse
* Iterate over unique items in reverse-sorted order:
* for (string s : raman::From(GetStrings()).Sort().Unique().Reverse()) { ... }
*
* (3) Conversion
* Convert any container to any container:
* vector<int> list_to_vector = raman::From(l); // l is of type list<int>
*
* To enable internal asserts #define RAMAN_ENABLE_RUNTIME_ASSERT
*/
#ifndef RAMAN_CONTAINERS_LIBRARY
#define RAMAN_CONTAINERS_LIBRARY
#include <algorithm>
#include <exception>
#include <iterator>
#include <memory>
#include <type_traits>
#ifdef RAMAN_ENABLE_RUNTIME_ASSERT
# define RAMAN_STRINGIZE_DETAIL(x) #x
# define RAMAN_STRINGIZE(x) RAMAN_STRINGIZE_DETAIL(x)
# define RAMAN_ASSERT(x) \
if (!(x)) { \
::raman::internal::DieDebugHook(); \
throw std::runtime_error( \
"[" __FILE__ ":" RAMAN_STRINGIZE(__LINE__) "] " #x); \
}
#else
# define RAMAN_ASSERT(x)
#endif
// TODO:
// - Allow forward (i.e: non-backward) iterators
// - Add many more RAMAN_ASSERTs
namespace raman {
namespace internal {
void DieDebugHook() {}
template <typename Container>
using IteratorOf = typename Container::iterator;
template <typename Range>
using ReferenceType = decltype(*std::declval<typename Range::iterator>());
template <typename Range>
using ValueType =
typename std::remove_reference<ReferenceType<Range>>::type;
template <typename T>
constexpr bool IsAssignable() {
return std::is_copy_assignable<T>::value;
}
// Horrible, horrible hack to allow copy/move assignment of functors, which
// prior to C++20 can't be assigned.
template <typename Functor, typename = void>
struct AssignableFunctor;
template <typename Functor>
struct AssignableFunctor<
Functor,
typename std::enable_if<IsAssignable<Functor>()>::type> {
AssignableFunctor(Functor functor_arg)
: functor(std::move(functor_arg)) {}
AssignableFunctor(AssignableFunctor&&) = default;
AssignableFunctor& operator=(AssignableFunctor&& o) = default;
Functor functor;
};
template <typename Functor>
struct AssignableFunctor<
Functor,
typename std::enable_if<!IsAssignable<Functor>()>::type> {
AssignableFunctor(Functor functor_arg)
: functor(std::move(functor_arg)) {}
AssignableFunctor(AssignableFunctor&&) = default;
AssignableFunctor& operator=(AssignableFunctor&& o) {
functor.~Functor();
new (&functor) Functor(std::move(o.functor));
return *this;
}
Functor functor;
};
template <typename Iterator>
struct SimpleRange {
using iterator = Iterator;
explicit SimpleRange(Iterator begin, Iterator end)
: begin_(std::move(begin)),
end_(std::move(end)) {}
SimpleRange(SimpleRange&&) = default;
SimpleRange& operator=(SimpleRange&&) = default;
bool operator==(const SimpleRange& o) const {
return (begin_ == o.begin_ && end_ == o.end_);
}
iterator begin() { return begin_; }
iterator end() { return end_; }
private:
iterator begin_;
iterator end_;
};
template <typename Container>
struct ContainerOwner {
explicit ContainerOwner(Container&& container)
: container_(std::move(container)) {}
ContainerOwner(ContainerOwner&&) = default;
ContainerOwner& operator=(ContainerOwner&&) = default;
protected:
Container container_;
};
// Like SimpleRange, but also owns the container. Built for rvalues.
template <typename Container>
struct SimpleRangeOwner : ContainerOwner<Container>,
SimpleRange<typename Container::iterator> {
explicit SimpleRangeOwner(Container&& container)
: ContainerOwner<Container>(std::move(container)),
SimpleRange<IteratorOf<Container>>(
this->container_.begin(),
this->container_.end()) {}
SimpleRangeOwner(SimpleRangeOwner&& o) = default;
SimpleRangeOwner& operator=(SimpleRangeOwner&& o) = default;
};
// Filtered range.
template <typename Range, typename Filter>
struct FilteredRange {
explicit FilteredRange(Range range, Filter filter)
: range_(std::move(range)),
filter_(std::move(filter)) {}
FilteredRange(FilteredRange&&) = default;
FilteredRange& operator=(FilteredRange&&) = default;
struct iterator {
// iterator typedefs.
using iterator_category = typename Range::iterator::iterator_category;
using value_type = typename Range::iterator::value_type;
using difference_type = typename Range::iterator::difference_type;
using pointer = typename Range::iterator::pointer;
using reference = typename Range::iterator::reference;
explicit iterator(FilteredRange* const range,
typename Range::iterator iterator)
: range_(range),
iterator_(iterator) {
this->AdvanceToNextNonFilteredIfNeeded();
}
iterator(const iterator&) = default;
iterator& operator=(const iterator&) = default;
iterator(iterator&&) = default;
iterator& operator=(iterator&&) = default;
decltype(auto) operator*() const {
RAMAN_ASSERT(iterator_ != range_->range_.end());
return *iterator_;
}
decltype(auto) operator->() const {
return *this;
}
iterator& operator++() {
RAMAN_ASSERT(iterator_ != range_->range_.end());
++iterator_;
AdvanceToNextNonFilteredIfNeeded();
return *this;
}
iterator& operator--() {
RAMAN_ASSERT(iterator_ != range_->range_.begin());
--iterator_;
RetreatToPreviousNonFilteredIfNeeded();
return *this;
}
bool operator==(const iterator& o) const {
return (range_ == o.range_ && iterator_ == o.iterator_);
}
bool operator!=(const iterator& o) const {
return !(*this == o);
}
private:
// Will not advance if current element is not filtered.
void AdvanceToNextNonFilteredIfNeeded() {
while (iterator_ != range_->range_.end() &&
!range_->filter_.functor(*iterator_)) {
++iterator_;
}
}
void RetreatToPreviousNonFilteredIfNeeded() {
while (iterator_ != range_->range_.begin() &&
!range_->filter_.functor(*iterator_)) {
--iterator_;
}
}
FilteredRange* const range_;
typename Range::iterator iterator_;
};
bool operator==(const FilteredRange& o) const {
return (range_ == o.range_ && filter_.functor == o.filter_.functor);
}
iterator begin() {
return iterator(this, range_.begin());
}
iterator end() {
return iterator(this, range_.end());
}
private:
Range range_;
AssignableFunctor<Filter> filter_;
};
template <typename Iterator>
struct SimpleRangeIterator {
// iterator typedefs.
using iterator_category = typename Iterator::iterator_category;
using value_type = typename Iterator::value_type;
using difference_type = typename Iterator::difference_type;
using pointer = typename Iterator::pointer;
using reference = typename Iterator::reference;
explicit SimpleRangeIterator(Iterator iterator)
: iterator_(iterator) {}
SimpleRangeIterator(const SimpleRangeIterator&) = default;
SimpleRangeIterator& operator=(const SimpleRangeIterator&) = default;
SimpleRangeIterator(SimpleRangeIterator&&) = default;
SimpleRangeIterator& operator=(SimpleRangeIterator&&) = default;
SimpleRangeIterator& operator++() {
++iterator_;
return *this;
}
SimpleRangeIterator& operator--() {
--iterator_;
return *this;
}
protected:
Iterator iterator_;
};
template <typename Range, typename Transformer>
struct ByValueTransformerRange {
explicit ByValueTransformerRange(Range range, Transformer transformer)
: range_(std::move(range)),
transformer_(std::move(transformer)) {}
ByValueTransformerRange(ByValueTransformerRange&&) = default;
ByValueTransformerRange& operator=(ByValueTransformerRange&&) = default;
struct iterator : SimpleRangeIterator<typename Range::iterator> {
iterator(ByValueTransformerRange* const range,
typename Range::iterator iterator)
: SimpleRangeIterator<typename Range::iterator>(std::move(iterator)),
range_(range) {}
iterator(const iterator&) = default;
iterator& operator=(const iterator&) = default;
iterator(iterator&&) = default;
iterator& operator=(iterator&&) = default;
auto operator*() const {
RAMAN_ASSERT(this->iterator_ != range_->range_.end());
return range_->transformer_.functor(*this->iterator_);
}
auto operator->() const {
return *this;
}
bool operator==(const iterator& o) const {
return (range_ == o.range_ && this->iterator_ == o.iterator_);
}
bool operator!=(const iterator& o) const {
return !(*this == o);
}
private:
ByValueTransformerRange* const range_;
};
bool operator==(const ByValueTransformerRange& o) const {
return (this->range_ == o.range_ &&
transformer_.functor == o.transformer_.functor);
}
iterator begin() {
return iterator(this, range_.begin());
}
iterator end() {
return iterator(this, range_.end());
}
private:
Range range_;
AssignableFunctor<Transformer> transformer_;
friend struct iterator;
};
// Transformer range.
template <typename Range, typename Transformer>
struct ByRefTransformerRange {
explicit ByRefTransformerRange(Range range, Transformer transformer)
: range_(std::move(range)),
transformer_(std::move(transformer)) {}
ByRefTransformerRange(ByRefTransformerRange&&) = default;
ByRefTransformerRange& operator=(ByRefTransformerRange&&) = default;
struct iterator : SimpleRangeIterator<typename Range::iterator> {
iterator(ByRefTransformerRange* const range,
typename Range::iterator iterator)
: SimpleRangeIterator<typename Range::iterator>(std::move(iterator)),
range_(range) {}
iterator(const iterator&) = default;
iterator& operator=(const iterator&) = default;
iterator(iterator&&) = default;
iterator& operator=(iterator&&) = default;
decltype(auto) operator*() const {
RAMAN_ASSERT(this->iterator_ != range_->range_.end());
return range_->transformer_.functor(*this->iterator_);
}
decltype(auto) operator->() const {
return *this;
}
bool operator==(const iterator& o) const {
return (this->range_ == o.range_ && this->iterator_ == o.iterator_);
}
bool operator!=(const iterator& o) const {
return !(*this == o);
}
private:
ByRefTransformerRange* const range_;
};
bool operator==(const ByRefTransformerRange& o) const {
return (this->range_ == o.range_ &&
transformer_.functor == o.transformer_.functor);
}
iterator begin() {
return iterator(this, range_.begin());
}
iterator end() {
return iterator(this, range_.end());
}
private:
Range range_;
AssignableFunctor<Transformer> transformer_;
friend struct iterator;
};
template <typename T>
struct DereferenceFunctor {
DereferenceFunctor() = default;
DereferenceFunctor(const DereferenceFunctor&) = default;
DereferenceFunctor(DereferenceFunctor&&) = default;
DereferenceFunctor& operator=(const DereferenceFunctor&) = default;
DereferenceFunctor& operator=(DereferenceFunctor&&) = default;
decltype(auto) operator()(const T& t) const {
return *t;
}
bool operator==(const DereferenceFunctor& o) const {
return true;
}
};
template <typename Range>
struct DereferenceRange
: ByRefTransformerRange<Range,
DereferenceFunctor<ReferenceType<Range>>> {
explicit DereferenceRange(Range range)
: ByRefTransformerRange<Range,
DereferenceFunctor<ReferenceType<Range>>>(
std::move(range), DereferenceFunctor<ReferenceType<Range>>()) {}
DereferenceRange(DereferenceRange&&) = default;
DereferenceRange& operator=(DereferenceRange&&) = default;
};
template <typename Range>
struct ReverseRange {
explicit ReverseRange(Range range)
: range_(std::move(range)) {}
ReverseRange(ReverseRange&&) = default;
ReverseRange& operator=(ReverseRange&&) = default;
struct iterator {
// iterator typedefs.
using iterator_category = typename Range::iterator::iterator_category;
using value_type = typename Range::iterator::value_type;
using difference_type = typename Range::iterator::difference_type;
using pointer = typename Range::iterator::pointer;
using reference = typename Range::iterator::reference;
explicit iterator(ReverseRange* const range,
typename Range::iterator iterator,
bool is_at_rend = false)
: range_(range),
iterator_(iterator),
is_at_rend_(is_at_rend) {}
iterator(const iterator&) = default;
iterator& operator=(const iterator&) = default;
iterator(iterator&&) = default;
iterator& operator=(iterator&&) = default;
decltype(auto) operator*() const {
RAMAN_ASSERT(iterator_ != range_->range_.end());
RAMAN_ASSERT(!is_at_rend_);
return *iterator_;
}
decltype(auto) operator->() const {
return *this;
}
iterator& operator++() {
RAMAN_ASSERT(iterator_ != range_->range_.end());
RAMAN_ASSERT(!is_at_rend_);
if (iterator_ == range_->range_.begin()) {
is_at_rend_ = true;
} else {
--iterator_;
}
return *this;
}
iterator& operator--() {
RAMAN_ASSERT(iterator_ != range_->range_.end());
if (is_at_rend_) {
RAMAN_ASSERT(iterator_ == range_->range_.begin());
is_at_rend_ = false;
} else {
++iterator_;
RAMAN_ASSERT(iterator_ != range_->range_.begin());
}
return *this;
}
bool operator==(const iterator& o) const {
return (range_ == o.range_ &&
iterator_ == o.iterator_ &&
is_at_rend_ == o.is_at_rend_);
}
bool operator!=(const iterator& o) const {
return !(*this == o);
}
private:
ReverseRange* const range_;
typename Range::iterator iterator_;
bool is_at_rend_;
};
bool operator==(const ReverseRange& o) const {
return (range_ == o.range_);
}
iterator begin() {
auto inner_it = range_.end();
if (inner_it == range_.begin()) {
return iterator(this, inner_it, true);
} else {
--inner_it;
return iterator(this, inner_it);
}
}
iterator end() {
return iterator(this, range_.begin(), true);
}
private:
Range range_;
};
// RamanWrapper wraps a Range with functions that allow manipulating it, such
// as Where(), Reverse(), etc.
// It is only allowed to be used in telescoping (like:
// From(x).Where().Sort()), and thus all methods only exist for rvalues.
template <typename Range>
struct RamanWrapper {
explicit RamanWrapper(Range range)
: range_(std::move(range)) {}
RamanWrapper(RamanWrapper&&) = default;
RamanWrapper& operator=(RamanWrapper&&) = default;
template <typename Filter>
auto Where(Filter filter) && {
using InnerRange = FilteredRange<Range, Filter>;
return RamanWrapper<InnerRange>(InnerRange(
std::move(range_), std::move(filter)));
}
template <typename Transformer>
auto Transform(Transformer transformer) && {
using InnerRange = ByValueTransformerRange<Range, Transformer>;
return RamanWrapper<InnerRange>(
InnerRange(std::move(range_), std::move(transformer)));
}
auto Keys() && {
auto transformer = [](const ValueType<Range>& entry) {
return entry.first;
};
using InnerRange =
ByValueTransformerRange<Range, decltype(transformer)>;
return RamanWrapper<InnerRange>(
InnerRange(std::move(range_), std::move(transformer)));
}
auto Values() && {
auto transformer = [](ValueType<Range>& entry) -> auto& {
return entry.second;
};
using InnerRange = ByRefTransformerRange<Range, decltype(transformer)>;
return RamanWrapper<InnerRange>(
InnerRange(std::move(range_), std::move(transformer)));
}
auto Dereference() && {
using InnerRange = DereferenceRange<Range>;
return RamanWrapper<InnerRange>(InnerRange(std::move(range_)));
}
auto AddressOf() && {
auto transformer = [](ValueType<Range>& entry) { return &entry; };
using InnerRange =
ByValueTransformerRange<Range, decltype(transformer)>;
return RamanWrapper<InnerRange>(
InnerRange(std::move(range_), std::move(transformer)));
}
auto Reverse() && {
using InnerRange = ReverseRange<Range>;
return RamanWrapper<InnerRange>(InnerRange(std::move(range_)));
}
// Iterates over the range in a sorted fashion, while returning a
// reference to each of the values of the original list. You may modify
// values unless otherwise limited.
// TODO: This does not yet occur lazily.
auto Sort() && {
return std::move(*this).Sort(std::less<ValueType<Range>>());
}
template <typename Comparator>
auto Sort(Comparator comparator) && {
using Pointer = ValueType<Range>*;
using TmpVector = std::vector<Pointer>;
TmpVector v;
for (auto& value : *this) {
v.push_back(&value);
}
std::sort(v.begin(), v.end(), [&](Pointer a, Pointer b) {
return comparator(*a, *b);
});
// Owns both sorted and unsorted ranges.
struct OwnerRange : internal::SimpleRangeOwner<TmpVector> {
OwnerRange(TmpVector&& sorted, Range range)
: internal::SimpleRangeOwner<TmpVector>(std::move(sorted)),
range_(std::move(range)) {}
OwnerRange(OwnerRange&&) = default;
OwnerRange& operator=(OwnerRange&&) = default;
protected:
Range range_;
};
using DerefRange = DereferenceRange<OwnerRange>;
return RamanWrapper<DerefRange>(DerefRange(OwnerRange(
std::move(v), std::move(range_))));
}
// Skips CONSECUTIVE identical items, like command line uniq.
// Sort() first if you want global uniqueness.
auto Unique() && {
return std::move(*this).Unique(std::equal_to<ValueType<Range>>());
}
template <typename Comparator>
auto Unique(Comparator comparator) && {
using Value = ValueType<Range>;
struct Filter {
explicit Filter(Comparator comparator)
: comparator_(std::move(comparator)) {}
bool operator()(const Value& value) const {
if (previous_ == nullptr) {
previous_ = &value;
return true;
}
bool equals_previous = comparator_(*previous_, value);
previous_ = &value;
return !equals_previous;
}
mutable const Value* previous_ = nullptr;
Comparator comparator_;
};
using InnerRange = FilteredRange<Range, Filter>;
return RamanWrapper<InnerRange>(InnerRange(
std::move(range_), std::move(Filter(std::move(comparator)))));
}
auto begin() { return range_.begin(); }
auto end() { return range_.end(); }
// Implicit cast to any container.
// TODO: use std::move() if we own the container(?)
template <typename Container>
operator Container() && {
Container container;
auto output_it = std::inserter(container, container.end());
for (const auto& it : *this) {
*output_it = it;
++output_it;
}
return container;
}
private:
Range range_;
};
}
template <typename Iterator>
auto From(Iterator begin, Iterator end) {
using Range = internal::SimpleRange<Iterator>;
return internal::RamanWrapper<Range>(
Range(std::move(begin), std::move(end)));
}
// This version takes objects with lifetimes longer than the wrapper.
template <typename Container>
auto From(Container& container) {
return From(container.begin(), container.end());
}
// This version keeps `container` alive while the wrapper is alive.
template <typename Container>
auto From(Container&& container) {
using Range = internal::SimpleRangeOwner<Container>;
return internal::RamanWrapper<Range>(Range(std::move(container)));
}
}
#endif //RAMAN_CONTAINERS_LIBRARY