-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathRDDs.html
74 lines (62 loc) · 3.64 KB
/
RDDs.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
<html lang="en-US"><head>
<meta charset="UTF-8">
<meta http-equiv="X-UA-Compatible" content="chrome=1">
<meta name="viewport" content="width=device-width">
<link rel="stylesheet" href="/assets/css/style.css">
<script type="text/javascript" async
src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.7/MathJax.js?config=TeX-MML-AM_CHTML">
</script>
<!--[if lt IE 9]>
<script src="https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js"></script>
<![endif]-->
</head>
<body>
<div class="wrapper">
<header>
<h1><a href="https://charliezhang.net/">Charlie Zhang</a></h1>
<p>MS-DSPP 22' @ Georgetown <br> cz317 [at] georgetown.edu</p>
<p class="view"><a href="https://www.charliezhang.net"> Home </a></p>
<p class="view"><a href="https://charliezhang.net/blog"> Blog </a></p>
</header>
<section>
<small></small>
<h1>Regression Discontinuity Designs</h1>
<p class="view">by Charlie Zhang</p>
<h2>Sharp RD (SRD)</h2>
<p>Assumptions:</p>
<ol>
<li>\(Y_{i}(0), Y_{i}(1) \perp W_{i} | X_{i}\) (Unconfoundness)</li>
<li>Continuity of Conditional Regression Functions <a href="https://www.sciencedirect.com/science/article/abs/pii/S0304407607001091">(Imben and Lee, 2008)</a>
\(E[Y(0)|X]\) and \(E[Y(1)|X]\) are continuous in \(x\) as a result of the violation of the RCM; </li>
<li>Continuity of Conditional Distribution Functions</li>
</ol>
<p>
Treatment status is a deterministic and discontinuous function of a covariate (MHE, p.189). It is formally expressed as \(P(T = 1 | x < x^∗) = 1\) and \(P(T = 1 | x ≥ x^∗) = 0\) in the case the forcing variable is x and the threshold is \(x^*\).
</p>
<p>
Then, the Average causal effect of the treatment at the discontinuity point is:
$$\tau_{SRD} = E[Y_{1} − Y_{0} | X_{i} = c] = \lim_{x \downarrow c} E[Y_{i} | X_{i} = x] − \lim_{x \uparrow c} E[Y_{i} | X_{i} = x]$$
</p>
<h2>Fuzzy RD (FRD)</h2>
<p>Assumptions:</p>
<p>
Treatment status is a deterministic and discontinuous function of a covariate (MHE, p.189). It is formally expressed as \(P(T = 1 | x < x^∗) = 1\) and \(P(T = 1 | x ≥ x^∗) = 0\) in the case the forcing variable is x and the threshold is \(x^*\).
</p>
<p>
Then, the Average causal effect of the treatment at the discontinuity point is:
$$\tau_{FRD} = \frac{\lim_{x \downarrow c} E[Y|X=x] - \lim_{x \uparrow c} E[Y|X=x]}{\lim_{x \downarrow c} E[W|X=x] - \lim_{x \uparrow c} E[W|X=x]} \\ = E[Y_{i}(1) - Y_{i}(0) | \text{unit i is a complier and } X_{i} = c]$$
</p>
<h2>Others</h2>
<h3>The problem of external validity</h3>
<ol>
<li>Both SRD and FRD can, at best, provide estimates of the average treatment effect for a subpopulation, namely the subpopulation with covariate value equal to \(X_{i} = c\);</li>
<li>RD designs might have a relatively high degree of internal validity based on unconfoundness.</li>
</ol>
</section>
<footer>
<p class="view"> <small> Charlie Zhang on <a href="https://www.linkedin.com/in/charlie-zhang-b639a1128/"> LinkedIn </a></small></p>
<p> <small> This project is maintained by <a href="https://github.com/ccxzhang">ccxzhang</a> </small> </p>
</footer>
</div>
<script src="/assets/js/scale.fix.js"></script>
</body></html>