-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathrepeat-subproblem-optimization.js
94 lines (88 loc) · 1.87 KB
/
repeat-subproblem-optimization.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
/**
* @desc 重复子问题优化
*/
/**
* @desc 斐波那契数列 - 基础版
* @time O(2^n)
* @param {Number} n
*/
export function fib (n) {
return n <= 1 ? 1 : fib(n - 1) + fib(n - 2)
}
// Test
console.log(fib(3))
console.log(fib(200)) // 等很久
/**
* @desc 斐波那契数列 - 动态规划优化版
* @time O(n)
* @param {Number} n
*/
export function fibDynamic (n) {
let pre = 1, cur = 1
for (let i = 2; i < n; i++) {
[cur, pre] = [cur + pre, cur]
}
return cur
}
// Test
console.log(fibDynamic(3))
console.log(fibDynamic(200))
/**
* @desc 斐波那契数列 - 尾递归优化
* 尾递归优化实质上是编译器在解析时将递归写法改写成循环(while/goTo)
* 目的是用递归的写法便于理解和代码量少
* 编译成循环的方式使得运行更快
* @param {Number} n
* @param {Number} num
* @param {Number} ret
* @return {Number} ret
*/
export function fibTail (n, num = 1, ret = 1) {
if (n <= 1) return ret
return fibTail(n - 1, ret, num + ret)
}
// Test
console.log(fibTail(3))
console.log(fibTail(200))
/**
* @desc 上台阶 - 基础版
* @time >O(2^n)
* @param {Number} n
*/
export function steps (n) {
if (n === 0) {
return 1
}
return [...Array(n)].map((_, i) => i)
.reduce((sum, cur) => {
return sum + steps(cur)
}, 0)
}
// Test
console.log(steps(3))
console.log(steps(20))
/**
* @desc 上台阶 - 动态规划优化版
* @time O(n)
* @param {Number} n
*/
export function stepsDynamic (n) {
const sum = [1, 1]
for (let i = 2; i < n; i++) {
sum[i] = sum.reduce((a, b) => a + b)
}
return sum.pop()
}
// Test
console.log(stepsDynamic(3))
console.log(stepsDynamic(20))
/**
* @desc 上台阶 - 究极快
* @param {Number} n
*/
export function stepsFastest (n) {
return 1 << (n - 1)
}
// Test
console.log(stepsFastest(3))
console.log(stepsFastest(20))