-
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathoverview.py
487 lines (441 loc) · 20.4 KB
/
overview.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
from PyQt5.QtGui import QPixmap, QImage
from PyQt5.QtWidgets import QRadioButton
import cv2
import platform
if platform.system() == 'Linux':
import os
envpath = '/home/bunnie/.local/lib/python3.10/site-packages/cv2/qt/plugins/platforms'
os.environ['QT_QPA_PLATFORM_PLUGIN_PATH'] = envpath
import numpy as np
import matplotlib.pyplot as plt
from scipy.linalg import svd
import logging
import json
from pathlib import Path
from schema import Schema
from prims import Rect, Point
from utils import safe_image_broadcast
from math import ceil, sqrt
from config import *
from progressbar.bar import ProgressBar
# This generates a black-and-white only full resolution overview, suitable for saving to files.
def generate_fullres_overview(self, blend=True):
sorted_tiles = self.schema.sorted_tiles()
canvas = np.zeros((int(self.schema.max_res[1]), int(self.schema.max_res[0])), dtype=np.uint8)
# ones indicate regions that need to be copied
if blend:
mask = np.ones((int(self.schema.max_res[1]), int(self.schema.max_res[0])), dtype=np.uint8)
else:
mask = None
description='full res'
progress = ProgressBar(min_value=0, max_value=len(sorted_tiles), prefix=f'Loading {description} tiles... ').start()
for (index, (layer, tile)) in enumerate(sorted_tiles):
metadata = Schema.meta_from_fname(tile['file_name'])
(x, y) = self.um_to_pix_absolute(
(float(metadata['x']) * 1000 + float(tile['offset'][0]),
float(metadata['y']) * 1000 + float(tile['offset'][1]))
)
# move center coordinate to top left
x -= X_RES / 2
y -= Y_RES / 2
if self.status_render_unstitched.isChecked() is False:
if tile['auto_error'] != 'false': # skip erroneous or unstitched tiles
continue
img = self.schema.get_image_from_layer(layer, thumb=False).copy()
result = safe_image_broadcast(img, canvas, x, y, mask, 1.0)
if result is not None:
canvas, mask = result
progress.update(index)
progress.finish()
self.overview_fullres = canvas
# This generates a thumbnailed color overview, suitable for screen display. Also does overlay processing.
def redraw_overview(self, blend=True):
scale = THUMB_SCALE
sorted_tiles = self.schema.sorted_tiles()
canvas = np.zeros((int(self.schema.max_res[1] * scale), int(self.schema.max_res[0] * scale), 3), dtype=np.uint8)
# ones indicate regions that need to be copied
if blend:
mask = np.ones((int(self.schema.max_res[1] * scale), int(self.schema.max_res[0] * scale)), dtype=np.uint8)
else:
mask = None
description='thumbnail'
progress = ProgressBar(min_value=0, max_value=len(sorted_tiles), prefix=f'Loading {description} tiles... ').start()
for (index, (layer, tile)) in enumerate(sorted_tiles):
metadata = Schema.meta_from_fname(tile['file_name'])
(x, y) = self.um_to_pix_absolute(
(float(metadata['x']) * 1000 + float(tile['offset'][0]),
float(metadata['y']) * 1000 + float(tile['offset'][1]))
)
# move center coordinate to top left
x -= X_RES / 2
y -= Y_RES / 2
if self.status_render_unstitched.isChecked() is False:
if tile['auto_error'] != 'false': # skip erroneous or unstitched tiles
continue
img = self.schema.get_image_from_layer(layer, thumb=True).copy()
img = cv2.cvtColor(img, cv2.COLOR_GRAY2RGB)
if tile['auto_error'] == 'true':
# "x-out" the tile as being flagged for manual review
cv2.line(
img,
(0, 0),
(img.shape[1], img.shape[0]),
(255, 255, 255),
50,
lineType=cv2.LINE_AA
)
cv2.line(
img,
(img.shape[1], 0),
(0, img.shape[0]),
(255, 255, 255),
50,
lineType=cv2.LINE_AA
)
if self.focus_vis_dict is not None and layer in self.focus_vis_dict:
dist = self.focus_vis_dict[layer]
overlay = np.zeros((img.shape[0], img.shape[1], 3), dtype=np.uint8)
cv2.rectangle(
overlay,
(0, 0),
(img.shape[1], img.shape[0]),
(int(dist * 0xDC), int(dist * 0x58), int(dist * 0x00)),
-1
)
img = cv2.addWeighted(img, 1.0, overlay, 0.5, 0)
if self.layer_mse_norm_dict is not None and layer in self.layer_mse_norm_dict:
mse = self.layer_mse_norm_dict[layer]
overlay = np.zeros((img.shape[0], img.shape[1], 3), dtype=np.uint8)
cv2.rectangle(
overlay,
(0, 0),
(img.shape[1], img.shape[0]),
(int(mse * 0x4F), int(mse * 0x85), int(mse * 0x42)),
-1
)
img = cv2.addWeighted(img, 1.0, overlay, 0.5, 0)
result = safe_image_broadcast(img, canvas, x, y, mask, scale)
if result is not None:
canvas, mask = result
progress.update(index)
progress.finish()
self.overview = canvas
self.rescale_overview()
if self.show_selection:
self.preview_selection()
# This only rescales from a cached copy, does not actually recompute anything.
def rescale_overview(self):
w = self.lbl_overview.width()
h = self.lbl_overview.height()
(y_res, x_res, _planes) = self.overview.shape
# constrain by height and aspect ratio
scaled = cv2.resize(self.overview, (int(x_res * (h / y_res)), h))
height, width, planes = scaled.shape
bytesPerLine = planes * width
self.lbl_overview.setPixmap(QPixmap.fromImage(
QImage(scaled.data, width, height, bytesPerLine, QImage.Format.Format_RGB888)
))
self.overview_actual_size = (width, height)
self.overview_scaled = scaled.copy()
def on_layer_click(self):
rb = self.sender()
if rb.isChecked():
layer = rb.text().split(':')[0]
self.layer_selected = layer
self.update_selected_rect(update_tile=True, update_layer_list=False)
def update_selected_rect(self, update_tile=False, update_layer_list=True):
# check that the selected layer exists in the database. It can disappear if
# a tile was removed during manual stitching.
if self.layer_selected is not None:
if not self.schema.contains_layer(self.layer_selected):
update_layer_list = True
self.layer_selected = None
# Extract the list of intersecting tiles and update the UI
closet_tiles = self.schema.get_intersecting_tiles((self.roi_center_ums[0] / 1000, self.roi_center_ums[1] / 1000),
intersect_point=True)
if update_layer_list:
# clear all widgets from the vbox layout
while self.status_layer_select_layout.count():
child = self.status_layer_select_layout.takeAt(0)
if child.widget():
child.widget().deleteLater()
first = True
for (layer, t) in closet_tiles:
md = Schema.meta_from_fname(t['file_name'])
t_center = Point(float(md['x'] + t['offset'][0] / 1000), float(md['y'] + t['offset'][1] / 1000))
b = QRadioButton(str(layer) + f': {t_center[0]:0.3f},{t_center[1]:0.3f}')
if first:
b.setChecked(True)
first = False
b.toggled.connect(self.on_layer_click)
self.status_layer_select_layout.addWidget(b)
# Draw the UI assuming the closest is the selected.
if self.layer_selected is None:
(layer, tile) = self.schema.get_tile_by_coordinate(self.selected_image_centroid)
metadata = Schema.meta_from_tile(tile)
else:
layer = self.layer_selected
(metadata, tile) = self.schema.get_info_from_layer(layer)
selected_image = self.schema.get_image_from_layer(layer, thumb=True)
logging.info(f"Selected layer {layer}: {metadata['x']}, {metadata['y']} nom, {tile['offset']} offset")
# Refactor: work from the original, composite, then scale down.
# (Originally: work on scaled copy. Problem: subpixel snapping causes image to shift.)
(x_c, y_c) = self.um_to_pix_absolute(
(float(metadata['x']) * 1000 + float(tile['offset'][0]),
float(metadata['y']) * 1000 + float(tile['offset'][1]))
)
ui_overlay = self.overview.copy()
# x/y coords to safe_image_broadcast are unscaled
w = selected_image.shape[1] / THUMB_SCALE
h = selected_image.shape[0] / THUMB_SCALE
tl_x = int(x_c - w/2)
tl_y = int(y_c - h/2)
# overlay the tile
if update_tile:
safe_image_broadcast(selected_image, ui_overlay, tl_x, tl_y)
# use the same height-driven rescale as in `rescale_overview()`
# constrain by height and aspect ratio
(y_res, x_res, _planes) = self.overview.shape
h_target = self.lbl_overview.height()
scaled = cv2.resize(ui_overlay, (int(x_res * (h_target / y_res)), h_target))
# draw the immediate selection
thickness = ceil((y_res / h_target) * THUMB_SCALE) # get a 1-pix line after rescaling
self.draw_rect_at_center((x_c, y_c), scaled, thickness = thickness, color = (255, 192, 255))
# overlay the group selection preview
if self.show_selection:
ui_overlay = self.compute_selection_overlay()
scaled = cv2.addWeighted(scaled, 1.0, ui_overlay, 0.5, 0.0)
# blit to viewing portal
height, width, planes = scaled.shape
bytesPerLine = planes * width
self.lbl_overview.setPixmap(QPixmap.fromImage(
QImage(scaled.data, width, height, bytesPerLine, QImage.Format.Format_RGB888)
))
# update the status bar output
(layer, t) = self.schema.get_tile_by_coordinate(self.selected_image_centroid)
if t is not None:
md = Schema.meta_from_fname(t['file_name'])
self.status_centroid_ui.setText(f"{md['x']:0.2f}, {md['y']:0.2f}")
self.status_layer_ui.setText(f"{layer}")
self.status_is_anchor.setChecked(layer == self.schema.anchor_layer_index())
self.status_offset_ui.setText(f"{t['offset'][0]:0.2f}, {t['offset'][1]:0.2f}")
self.status_score.setText(f"{t['score']:0.3f}")
self.status_stitch_err.setText(f"{t['auto_error']}")
if md['r'] >= 0:
self.status_rev_ui.setText(f"{int(md['r'])}")
else:
self.status_rev_ui.setText("average")
if 'f' in md:
self.status_fit_metric_ui.setText(f"{md['f']:0.1f}")
else:
self.status_fit_metric_ui.setText("None")
if 's' in md:
self.status_score_metric_ui.setText(f"{md['s']}")
else:
self.status_score_metric_ui.setText("None")
if 'v' in md:
self.status_ratio_metric_ui.setText(f"{md['v']:0.3f}")
else:
self.status_ratio_metric_ui.setText("None")
def get_coords_in_range(self):
if self.select_pt1 is None or self.select_pt2 is None:
# just select the currently selected tile
return [self.selected_image_centroid]
boundary = Rect(self.select_pt1, self.select_pt2)
coords_in_range = []
for coords in self.schema.coords_mm:
c = Point(coords[0], coords[1])
if boundary.intersects(c):
coords_in_range += [coords]
return coords_in_range
def rect_at_center(self, c):
(x_c, y_c) = c
w = (self.overview_actual_size[0] / self.schema.max_res[0]) * X_RES
h = (self.overview_actual_size[1] / self.schema.max_res[1]) * Y_RES
# define the rectangle
x_c = (self.overview_actual_size[0] / self.schema.max_res[0]) * x_c
y_c = (self.overview_actual_size[1] / self.schema.max_res[1]) * y_c
tl_x = int(x_c - w/2)
tl_y = int(y_c - h/2)
return Rect(Point(tl_x, tl_y), Point(tl_x + int(w), tl_y + int(h)))
def draw_rect_at_center(self, c, img, thickness = 1, color = (128, 128, 128)):
r = self.rect_at_center(c)
cv2.rectangle(
img,
r.tl_int_tup(),
r.br_int_tup(),
color,
thickness = thickness,
lineType = cv2.LINE_4
)
def compute_selection_overlay(self):
if self.selected_image_centroid is None: # edge case of startup, nothing has been clicked yet
return
ui_overlay = np.zeros(self.overview_scaled.shape, self.overview_scaled.dtype)
coords_in_range = self.get_coords_in_range()
for coord in coords_in_range:
(_layer, tile) = self.schema.get_tile_by_coordinate(coord)
metadata = Schema.meta_from_tile(tile)
(x_c, y_c) = self.um_to_pix_absolute(
(float(metadata['x']) * 1000 + float(tile['offset'][0]),
float(metadata['y']) * 1000 + float(tile['offset'][1]))
)
self.draw_rect_at_center((x_c, y_c), ui_overlay)
return ui_overlay
def preview_selection(self):
if not self.show_selection or self.selected_image_centroid is None:
return
ui_overlay = self.compute_selection_overlay()
composite = cv2.addWeighted(self.overview_scaled, 1.0, ui_overlay, 0.5, 0.0)
height, width, planes = self.overview_scaled.shape
bytesPerLine = planes * width
self.lbl_overview.setPixmap(QPixmap.fromImage(
QImage(composite.data, width, height, bytesPerLine, QImage.Format.Format_RGB888)
))
# ASSUME: tile is X_RES, Y_RES in resolution
def centroid_to_tile_bounding_rect_mm(self, centroid_mm):
(x_mm, y_mm) = centroid_mm
w_mm = (X_RES / Schema.PIX_PER_UM) / 1000
h_mm = (Y_RES / Schema.PIX_PER_UM) / 1000
# compute a window that is `opening` wide that tries its best to center around
# `center`, but does not exceed [0, max)
def snap_range(self, x_off, w, max):
assert max >= w, "window requested is wider than the maximum image resolution"
# check if we have space on the left
if x_off - w/2 >= 0:
if x_off + w/2 <= max:
return (int(x_off - w/2), int(x_off + w/2)) # window fits!
else:
return (int(max - w), max) # snap window to the right
else:
return (0, w) # snap window to the left
# checks that a value is between [0, max):
def check_res_bounds(self, x, max):
if x < 0:
print(f"Res check got {x} < 0", x)
return 0
elif x >= max:
print(f"Res check got {x} >= {max}", x, max)
return max - 1
else:
return x
def pix_to_um_absolute(self, pix, cur_res):
(x, y) = pix
(res_x, res_y) = cur_res
return (
x * (self.schema.max_res[0] / res_x) / Schema.PIX_PER_UM + self.schema.x_min_mm * 1000,
y * (self.schema.max_res[1] / res_y) / Schema.PIX_PER_UM + self.schema.y_min_mm * 1000
)
def um_to_pix_absolute(self, um):
(x_um, y_um) = um
return (
int((x_um - self.schema.x_min_mm * 1000) * Schema.PIX_PER_UM),
int((y_um - self.schema.y_min_mm * 1000) * Schema.PIX_PER_UM)
)
# Right now, this visualizes the delta of the focus off of the inferred chip plane
# Might be interesting to try a mode where we visualize the focus score metric itself?
def on_focus_visualize(self):
if self.status_focus_plane_button.text() == 'Visualize Focus':
self.status_focus_plane_button.setText('Remove Focus Overlay')
# extract and plot the raw points
x = []
y = []
z = []
layers = []
for layer, tile in self.schema.tiles():
meta = Schema.meta_from_fname(tile['file_name'])
x += [meta['x'] + tile['offset'][0] / 1000]
y += [meta['y'] + tile['offset'][1] / 1000]
z += [(meta['z'] - meta['p'] * PIEZO_UM_PER_LSB / 1000.0)]
layers += [layer]
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
ax.scatter(x, y, z)
# extract the plane equation used for focus determination from the debug data
try:
with open(self.schema.path / Path('debug.json'), 'r') as debug_f:
focus_debug = json.loads(debug_f.read())
plane_poly = focus_debug['plane']
except:
plane_poly = None
# plot the plane equation, if it exists
if plane_poly is not None:
plane_x = np.linspace(self.schema.br_frame[0], self.schema.tl_frame[0], 10)
plane_y = np.linspace(self.schema.br_frame[1], self.schema.tl_frame[1], 10)
PX, PY = np.meshgrid(plane_x, plane_y)
PZ = -(plane_poly[3] + plane_poly[0] * PX + plane_poly[1] * PY) / plane_poly[2]
ax.plot_surface(PX, PY, PZ)
# compute the best-fit plane against the focus data
points = np.column_stack((x, y, z))
centroid = np.mean(points, axis=0)
centered_points = points - centroid
U, S, Vt = svd(centered_points)
normal_vector = Vt[-1, :]
normal_vector /= np.linalg.norm(normal_vector)
A, B, C = normal_vector
D = -np.dot(normal_vector, centroid)
PZ_prime = -(D + A * PX + B * PY) / C
ax.plot_surface(PX, PY, PZ_prime)
# show all of the above, plotted together
plt.show()
# compute the overlay output: a [0, 1] interval number that reflects a metric
# Options include:
# - distance of the points to the best-fit plane
# - focus score metric
# - focus ratio metric
metric = 'SCORE'
if metric == 'DIST':
# distance of points to the best fit plane
data_list = []
for (x0, y0, z0) in points:
data_list += [abs(A * x0 + B * y0 + C * z0 + D) / sqrt(A**2 + B**2 + C**2)]
data_np = np.array(data_list, dtype=float)
norm_data = cv2.normalize(data_np, None, 0, 1, norm_type=cv2.NORM_MINMAX)
self.focus_vis_dict = {key: value for key, value in zip(layers, norm_data)}
elif metric == 'SCORE':
# focus score metric
data_list = []
for layer, tile in self.schema.tiles():
meta = Schema.meta_from_fname(tile['file_name'])
data_list += [meta['s']]
data_np = np.array(data_list, dtype=float)
norm_data = cv2.normalize(data_np, None, 0, 1, norm_type=cv2.NORM_MINMAX)
norm_data = 1 - norm_data # flip the polarity, as lower metrics are worse
self.focus_vis_dict = {key: value for key, value in zip(layers, norm_data)}
elif metric == 'RATIO':
# focus score metric
data_list = []
for layer, tile in self.schema.tiles():
meta = Schema.meta_from_fname(tile['file_name'])
data_list += [meta['v']]
data_np = np.array(data_list, dtype=float)
norm_data = cv2.normalize(data_np, None, 0, 1, norm_type=cv2.NORM_MINMAX)
norm_data = 1 - norm_data # flip the polarity, as lower metrics are worse
self.focus_vis_dict = {key: value for key, value in zip(layers, norm_data)}
else:
self.focus_vis_dict = None
self.status_focus_plane_button.setText('Visualize Focus')
self.redraw_overview()
def on_mse_visualize(self):
if self.status_mse_visualize_button.text() == 'Visualize MSE':
# extract all valid MSE results
self.layer_mse_norm_dict = {}
for (layer, tile) in self.schema.tiles():
if tile['mse'] > 0:
self.layer_mse_norm_dict[layer] = tile['mse']
# now normalize them
if len(self.layer_mse_norm_dict) > 1:
layers = list(self.layer_mse_norm_dict.keys())
mse_list = list(self.layer_mse_norm_dict.values())
mse_np = np.array(mse_list, dtype=float)
mse_np = 10 ** mse_np # undo the log10 weighting so the problems are more obvious in visualization
normalized_mse = cv2.normalize(mse_np, None, 0, 1, norm_type=cv2.NORM_MINMAX)
self.layer_mse_norm_dict = {key: value for key, value in zip(layers, normalized_mse)}
self.status_mse_visualize_button.setText('Remove MSE Overlay')
else:
self.layer_mse_norm_dict = None
logging.error("Not enough MSE points to visualize, ignoring request")
else:
self.layer_mse_norm_dict = None
self.status_mse_visualize_button.setText('Visualize MSE')
self.redraw_overview()