-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodels.py
88 lines (72 loc) · 2.54 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
import torch
import torch.nn as nn
from resnet1d.net1d import Net1D, MyConv1dPadSame
from typing import Literal
embedding_size = 64
project_size = 16
class Projector(nn.Module):
def __init__(self, embedding_size=embedding_size) -> None:
super().__init__()
self.linear = nn.Linear(embedding_size, embedding_size)
self.norm = nn.LayerNorm([embedding_size, ])
self.act = nn.ReLU()
self.linear2 = nn.Linear(embedding_size, embedding_size)
def forward(self, x):
x1 = self.linear(x)
x1 = self.norm(x1)
x1 = self.act(x1)
out = self.linear2(x1) + x
return out
class Extractor(nn.Module):
def __init__(self,
n_features,
n_channels=3,
embedding_size=64,
filter_list=[64, 256, 256, 512],
block_list=[3, 4, 6, 3]) -> None:
super().__init__()
self.resnet = Net1D(
in_channels=n_channels,
n_classes=embedding_size,
base_filters=n_features,
filter_list=filter_list,
m_blocks_list=block_list,
kernel_size=16,
stride=2,
# not sure what they does
ratio=1.0,
groups_width=16,
verbose=False,
)
def forward(self, x):
return self.resnet(x)
class ExtractorMLP(nn.Module):
def __init__(self,
n_features,
n_channels=3,
embedding_size=64,
hidden_size=64,
n_hidden=5,
stride=2,
kernel_size=16,
act: Literal['relu', 'swish'] ='relu'
) -> None:
super().__init__()
self.conv1d = MyConv1dPadSame(n_channels, 1, kernel_size=kernel_size, stride=stride)
self.linear_in = nn.Linear((n_features + stride -1) // stride, hidden_size)
self.backbone = nn.Sequential()
for i in range(n_hidden):
self.backbone.add_module(f'linear-{i}', nn.Linear(hidden_size, hidden_size))
if act == 'swish':
act_fn = nn.SiLU()
else:
act_fn = nn.ReLU()
self.backbone.add_module(f'act-{i}', act_fn)
self.linear_out = nn.Linear(hidden_size, embedding_size)
def forward(self, x):
x = self.conv1d(x)
# squeeze from (N, C, L) -> (N, L) since C=1
x = x.squeeze()
x = self.linear_in(x)
x = self.backbone(x)
return self.linear_out(x)