-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpipeline.py
164 lines (129 loc) · 5.65 KB
/
pipeline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
import copy
import pytorch_lightning as pl
import torch
from torch.optim import Adam
import torchvision
from torch import nn
import torchvision.transforms as transforms
from lightly.loss import DINOLoss
from lightly.data import LightlyDataset
from lightly.models.modules import DINOProjectionHead
from lightly.models.utils import deactivate_requires_grad, update_momentum, activate_requires_grad
from lightly.transforms.dino_transform import DINOTransform
from lightly.utils.scheduler import cosine_schedule
import wandb
class DINO(pl.LightningModule):
def __init__(self):
super().__init__()
backbone = torch.hub.load('facebookresearch/dino:main', 'dino_vits16', pretrained=False)
input_dim = backbone.embed_dim
self.student_backbone = backbone
self.student_head = DINOProjectionHead(
input_dim, 512, 64, 2048, freeze_last_layer=1
)
self.teacher_backbone = copy.deepcopy(backbone)
self.teacher_head = DINOProjectionHead(input_dim, 512, 64, 2048)
deactivate_requires_grad(self.teacher_backbone)
deactivate_requires_grad(self.teacher_head)
self.criterion = DINOLoss(output_dim=2048, warmup_teacher_temp_epochs=5)
def forward(self, x):
y = self.student_backbone(x).flatten(start_dim=1)
z = self.student_head(y)
return z
def forward_teacher(self, x):
y = self.teacher_backbone(x).flatten(start_dim=1)
z = self.teacher_head(y)
return z
def training_step(self, batch, batch_idx):
momentum = cosine_schedule(self.current_epoch, 10, 0.996, 1)
update_momentum(self.student_backbone, self.teacher_backbone, m=momentum)
update_momentum(self.student_head, self.teacher_head, m=momentum)
views = batch[0]
views = [view.to(self.device) for view in views]
global_views = views[:2]
teacher_out = [self.forward_teacher(view) for view in global_views]
student_out = [self.forward(view) for view in views]
loss = self.criterion(teacher_out, student_out, epoch=self.current_epoch)
wandb.log({"pretraining_loss": loss})
return loss
def on_after_backward(self):
self.student_head.cancel_last_layer_gradients(current_epoch=self.current_epoch)
def configure_optimizers(self):
optim = torch.optim.Adam(self.parameters(), lr=1e-5)
return optim
class Supervised_trainer(pl.LightningModule):
def __init__(self, model):
super().__init__()
self.model = model
self.loss_fn = nn.CrossEntropyLoss()
def forward(self, x):
return self.model(x)
def training_step(self, batch, batch_idx):
x, y = batch
logits = self.model(x)
loss = self.loss_fn(logits, y)
self.log('train_loss', loss)
wandb.log({"train_loss": loss})
return loss
def validation_step(self, batch, batch_idx):
x, y = batch
logits = self.model(x)
loss = self.loss_fn(logits, y)
preds = torch.argmax(logits, dim=1)
acc = self.accuracy(preds, y)
self.log('val_loss', loss, prog_bar=True)
self.log('val_acc', acc, prog_bar=True)
wandb.log({"val_loss": loss, "val_acc": acc})
return loss
def configure_optimizers(self):
optimizer = Adam(self.parameters(), lr=1e-5)
return optimizer
def pretrain():
print("starting pretraining")
wandb.init(project='unsup pretraining')
model = DINO()
transform = DINOTransform()
#is this important to have?: target_transform=lambda t: 0 (to ignore object detection)
cifar10 = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform)
crop_transform = DINOTransform(global_crop_size=196, local_crop_size=64)
dataset = LightlyDataset.from_torch_dataset(cifar10, transform=crop_transform)
dataloader = torch.utils.data.DataLoader(
dataset,
batch_size=64,
shuffle=True,
drop_last=True,
num_workers=8,
)
accelerator = "gpu" if torch.cuda.is_available() else "cpu"
trainer = pl.Trainer(max_epochs=10, devices=1, accelerator=accelerator)
trainer.fit(model=model, train_dataloaders=dataloader)
wandb.finish()
# we need to reactivate requires grad to perform supervised backpropagation later
activate_requires_grad(model.teacher_backbone)
return model.teacher_backbone
def create_datasets():
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Resize((224, 224)),
# transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
])
train_dataset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform)
val_dataset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform)
print("train size: ", len(train_dataset), "validation size: ", len(val_dataset))
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=32, shuffle=True)
val_loader = torch.utils.data.DataLoader(val_dataset, batch_size=32, shuffle=False)
return train_loader, val_loader
def supervised_train(model):
print("starting sup training")
wandb.init(project='sup training')
train_loader, val_loader = create_datasets()
sup_trainer = Supervised_trainer(model)
accelerator = "gpu" if torch.cuda.is_available() else "cpu"
# Create a PyTorch Lightning trainer
trainer = pl.Trainer(max_epochs=10, devices=1, accelerator=accelerator, val_dataloaders=val_loader)
# Train the model
trainer.fit(sup_trainer, train_loader)
wandb.finish()
if __name__ == '__main__':
pretrained_model = pretrain()
supervised_train(pretrained_model)