-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataset_chaos.jl
230 lines (204 loc) · 6.21 KB
/
dataset_chaos.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
using Images, FileIO, Colors, FixedPointNumbers, MLDatasets, Statistics
# using WAV
CANVAS_SIZE = 1000
function triangular_step(current_pos)
random_number = rand()
if random_number < 1/3
output = ([0, 0] + current_pos)/2
elseif random_number < 2/3
output = ([1, 0] + current_pos)/2
else
output = ([0.5, (3^0.5)/2] + current_pos)/2
end
output
end
function triangular_chaos(num_points)
output = zeros(num_points, 2)
output[1,:] = [0.5, 0.5]
for i in 2:num_points
output[i,:] = triangular_step(output[i-1,:])
end
output
end
function square_step(current_pos)
random_number = rand()
if random_number < 1/4
output = ([0, 0] + current_pos)/2
elseif random_number < 1/2
output = ([1, 0] + current_pos)/2
elseif random_number < 3/4
output = ([0, 1] + current_pos)/2
else
output = ([1, 1] + current_pos)/2
end
output
end
function square_chaos(num_points)
output = zeros(num_points, 2)
output[1,:] = [0.5, 0.5]
for i in 2:num_points
output[i,:] = square_step(output[i-1,:])
end
output
end
function circular_step(current_pos, step)
theta = 2*pi*step
output = ([(1+cos(theta))/2, (1+sin(theta))/2] + current_pos)/2
output
end
function circular_chaos(input)
num_points = length(input) + 1
output = zeros(num_points, 2)
output[1,:] = [0.5, 0.5]
for i in 2:num_points
output[i,:] = circular_step(output[i-1,:], input[i-1])
end
output
end
function square_driven_step(current_pos, step)
if step < 1/4
output = ([0, 0] + current_pos)/2
elseif step < 1/2
output = ([1, 0] + current_pos)/2
elseif step < 3/4
output = ([0, 1] + current_pos)/2
else
output = ([1, 1] + current_pos)/2
end
output
end
function square_driven_chaos(input)
num_points = length(input) + 1
output = zeros(num_points, 2)
output[1,:] = [0.5, 0.5]
for i in 2:num_points
output[i,:] = square_driven_step(output[i-1,:], input[i-1])
end
output
end
function plot_data(data, canvas_size, alpha)
num_points = size(data)[1]
canvas = zeros(canvas_size, canvas_size)
@. data = (data * canvas_size) + 1
data = floor.(Int, data)
@. data = canvas_size - data + 1
for i in 1:num_points
canvas[data[i,2], data[i,1]] += alpha
end
canvas
end
function pixel_color_transform(pixel)
output = zeros(3)
#white to blue colormap
if pixel <= 0
output = RGB(1.,1.,1.)
elseif pixel <=0.5
output = RGB(1-2pixel,1-2pixel,1)
else
output = RGB(0.,0.,1.)
end
output
end
function render_img(data, canvas_size, alpha)
data = plot_data(data, canvas_size, alpha)
x,y = size(data)
canvas = zeros(RGB,x,y)
for i in 1:x
for j in 1:y
canvas[i,j] = pixel_color_transform(data[i,j])
end
end
canvas
end
function sierpinski_main(num_points, canvas_size, alpha)
data = triangular_chaos(num_points)
@. data[data==1] = 0.99999
img = render_img(data, canvas_size, alpha)
save("triangle.jpg", img);
end
function square_main(num_points, canvas_size, alpha)
data = square_chaos(num_points)
@. data[data==1] = 0.99999
img = render_img(data, canvas_size, alpha)
save("square.jpg", img);
end
function circular_main(num_points, canvas_size, alpha)
data = circular_chaos(rand(num_points))
@. data[data==1] = 0.99999
img = render_img(data, canvas_size, alpha)
save("circular.jpg", img);
end
function munge_dataset(images)
if length(size(images))==4
image_data = mean(images, dims=3)
else
image_data = images
end
num_samples = size(image_data)[end]
image_data = reshape(image_data, :, num_samples)
image_data = reshape(image_data, :)
image_data = image_data + (rand(Float64, size(image_data))/100000)
quartiles = quantile(image_data, [0.25,0.5,0.75,1.0])
output = ones(size(image_data))
@. output[image_data < quartiles[3]] = 0.74
@. output[image_data < quartiles[2]] = 0.49
@. output[image_data < quartiles[1]] = 0.24
output
end
function cifar_10_square(canvas_size, alpha)
train_x, _ = CIFAR10.traindata()
chaos_in = munge_dataset(train_x)
data = square_driven_chaos(chaos_in)
@. data[data==1] = 0.99999
img = render_img(data, canvas_size, alpha)
save(string("cifar_10.jpg"), img)
end
function mnist_square(canvas_size, alpha)
train_x, _ = MNIST.traindata()
chaos_in = munge_dataset(train_x)
data = square_driven_chaos(chaos_in)
@. data[data==1] = 0.99999
img = render_img(data, canvas_size, alpha)
save(string("mnist.jpg"), img)
end
function fashion_mnist_square(canvas_size, alpha)
train_x, _ = FashionMNIST.traindata()
chaos_in = munge_dataset(train_x)
data = square_driven_chaos(chaos_in)
@. data[data==1] = 0.99999
img = render_img(data, canvas_size, alpha)
save(string("fashion_mnist.jpg"), img)
end
function cifar_100_square(canvas_size, alpha)
train_x, _ = CIFAR100.traindata()
chaos_in = munge_dataset(train_x)
data = square_driven_chaos(chaos_in)
@. data[data==1] = 0.99999
img = render_img(data, canvas_size, alpha)
save(string("cifar_100.jpg"), img)
end
# function import_wav(filepath)
# import_data = wavread(filepath)[1]
# import_data = mean(import_data, dims=2)
# import_data = reshape(import_data, :)
# import_data= import_data + (rand(Float64, size(import_data))/10000000)
# quartiles = quantile(import_data, [0.25,0.5,0.75,1.0])
# output = ones(size(import_data))
# @. output[import_data < quartiles[3]] = 0.74
# @. output[import_data < quartiles[2]] = 0.49
# @. output[import_data < quartiles[1]] = 0.24
# output
# end
# function wav_chaos(filename, canvas_size, alpha)
# chaos_in = import_wav(string(filename,".wav"))
# data = square_driven_chaos(chaos_in)
# @. data[data==1] = 0.99999
# img = render_img(data, canvas_size, alpha)
# save(string(filename,"_chaos.jpg"), img)
# end
sierpinski_main(100000000, 500, 0.001)
square_main(100000000, CANVAS_SIZE, 0.001)
cifar_10_square(CANVAS_SIZE,0.1)
mnist_square(CANVAS_SIZE,0.01)
# cifar_100_square(CANVAS_SIZE,0.1)
fashion_mnist_square(CANVAS_SIZE,0.1)