-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathGraphValidTree.java
215 lines (180 loc) · 6.77 KB
/
GraphValidTree.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
package com.leetcode;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.LinkedList;
import java.util.List;
import java.util.Queue;
import java.util.Stack;
public class GraphValidTree {
/*
One graph theory optimization on DFS and BFS below is if(edges.length != n-1) return false;
then check its connected by count visited == n
*/
class SolutionBFS {
//Because its un-directional store parent for cyclic check
public boolean validTree(int n, int[][] edges) {
//in BFS if we visit all node and no cyclic in graph its a tree.
//check all nodes are part of tree
HashMap<Integer, List<Integer>> map = new HashMap<>();
HashMap<Integer,Integer> parent = new HashMap<>();
for(int[] edge : edges){
List<Integer> l1 = map.getOrDefault(edge[0],new ArrayList<>());
l1.add(edge[1]);
map.put(edge[0],l1);
List<Integer> l2 = map.getOrDefault(edge[1],new ArrayList<>());
l2.add(edge[0]);
map.put(edge[1],l2);
}
Queue<Integer> queue = new LinkedList<>();
boolean [] visited = new boolean[n];
queue.offer(0);
while(queue.size() > 0){
int node = queue.poll();
visited[node] = true;
List<Integer> childs = map.getOrDefault(node, new ArrayList<>());//to not give null pointer
for(int next : childs){
if(!visited[next]){
queue.offer(next);
parent.put(next,node);
}else if(parent.get(node) != next){//To ensure a node has only one parent . Check the node parent is market as child then then its ok 0-1 , 1-0 because of undirected
return false;//cyclic
}
}
}
// All visited
for(boolean e : visited){
if(!e) return false;
}
return true;
}
}
class SolutionDFS {
//DFS
public boolean validTree(int n, int[][] edges) {
//in BFS if we visit all node and no cyclic in graph its a tree.
//check all nodes are part of tree
HashMap<Integer, List<Integer>> map = new HashMap<>();
HashMap<Integer,Integer> parent = new HashMap<>();
for(int[] edge : edges){
List<Integer> l1 = map.getOrDefault(edge[0],new ArrayList<>());
l1.add(edge[1]);
map.put(edge[0],l1);
List<Integer> l2 = map.getOrDefault(edge[1],new ArrayList<>());
l2.add(edge[0]);
map.put(edge[1],l2);
}
Stack<Integer> stack = new Stack<>();
boolean [] visited = new boolean[n];
stack.push(0);
while(stack.size() > 0){
int node = stack.pop();
visited[node] = true;
List<Integer> childs = map.getOrDefault(node, new ArrayList<>());//to not give null pointer
for(int next : childs){
if(!visited[next]){
stack.push(next);
parent.put(next,node);
}else if(parent.get(node) != next){//check the node parent is market as child then then its ok 0-1 , 1-0 because of undirected
return false;//cyclic
}
}
}
// All visited
for(boolean e : visited){
if(!e) return false;
}
return true;
}
}
//O(N)
class SolutionDFSOptimized {
//DFS/ BFS optimized
public boolean validTree(int n, int[][] edges) {
if(edges.length != n-1) return false;
//in BFS if we visit all node and no cyclic in graph its a tree.
//check all nodes are part of tree
HashMap<Integer, List<Integer>> map = new HashMap<>();
for(int[] edge : edges){
List<Integer> l1 = map.getOrDefault(edge[0],new ArrayList<>());
l1.add(edge[1]);
map.put(edge[0],l1);
List<Integer> l2 = map.getOrDefault(edge[1],new ArrayList<>());
l2.add(edge[0]);
map.put(edge[1],l2);
}
Stack<Integer> stack = new Stack<>();
boolean [] visited = new boolean[n];
stack.push(0);
while(stack.size() > 0){
int node = stack.pop();
visited[node] = true;
List<Integer> childs = map.getOrDefault(node, new ArrayList<>());//to not give null pointer
for(int next : childs){
if(!visited[next]){
stack.push(next);
}
}
}
// All visited
for(boolean e : visited){
if(!e) return false;
}
return true;
}
}
//O(N) to verify .
// Complexity
/**
Time to build graph : O(nlog(n))
Space: O(n) parent and size array
n: the total number of nodes in the given graph
Find operation
Time: O(log(n)) log(n) is the height of the tree
Space: O(1)
Union operation
Time: O(1)
Space: O(1)
**/
class SolutionUnionFind {
public boolean validTree(int n, int[][] edges) {
if(edges.length != n -1) return false;
UnionFind unionFind = new UnionFind(n);
for (int[] edge : edges) {
int a = edge[0];
int b = edge[1];
if(!unionFind.union(a,b)){
return false;
}
}
// If we are successfully able to merge all edges then no cycle
return true;
}
class UnionFind{
int[] parent;
public UnionFind(int n){
parent = new int[n];
for(int i = 0 ; i < n ; i++){
parent[i] = i;//n disjoint sets with each node parent to self
}
}
//find and merge the set
public int find(int node){
while(parent[node] != node){
node = parent[node];
}
return node;//trace the parent
}
public boolean union(int a , int b){
int parentA = find(a);
int parentB = find(b);
//if same set already
if(parentA == parentB){
return false;
}
//merge
parent[parentA] = parentB;
return true;
}
}
}
}