-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathProcessSchedulingAlgorithms.h
272 lines (234 loc) · 10.5 KB
/
ProcessSchedulingAlgorithms.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
#ifndef SIMPLE_OS_SIMULATOR_ALGORITHMS_H
#define SIMPLE_OS_SIMULATOR_ALGORITHMS_H
#define firstTimeRunning(_process) _process.getResponseTime() == -1
#include <vector>
#include <ctime>
#include <cstdlib>
#include <limits>
#include "Process.h"
#include "sOS-Sim.h"
namespace ProcessSchedulingAlgorithms {
static uint32_t maxProcessMultiprogramming = 0;
/***
* First-Come-First-Served (FCFS) scheduling algorithm [also know as First-In-Fist-Out (FIFO)]
* Used to medium-term Scheduling
* @return (*waitingQueue)[0]
*/
static bool FCFS(std::vector<Process>* waitingQueue, std::vector<Process>* readyQueue, double _elapsedTime) {
try {
if (!waitingQueue->empty()) {
Simulator::DebugLog(_elapsedTime,
"Process " + std::to_string((*waitingQueue)[0].getPID()) + " pronto");
(*waitingQueue)[0].updateSubmissionTime(_elapsedTime);
readyQueue->push_back((*waitingQueue)[0]);
waitingQueue->erase(waitingQueue->begin());
return true;
} else return false;
}
catch (...) {
std::cout << "Erro no escalonamento. Nenhum processo escalonado\n";
return false;
}
}
/***
* High-Response-Ration-Next (HRRN) scheduling algorithm
* Used to short-term Scheduling
* @return process with max((executionTime + waitingTime)/executionTime) in readyQueue
*/
static bool HRRN(std::vector<Process>* readyQueue, std::vector<Process>* runningList, int* _quantum, double _elapsedTime) {
try {
if (!readyQueue->empty()) {
int i = 0, hrr = 0;
for (auto responseratio = 0.0, maior = 0.0; i < (*readyQueue).size(); i++) {
(*readyQueue)[i].setWaitingTime(_elapsedTime);
responseratio = 1 + (*readyQueue)[i].getWaitingTime() / (*readyQueue)[i].getExecutionTime();
if (responseratio > maior) {
maior = responseratio;
hrr = i;
}
}
// set Quantum as limitless
(*_quantum) = std::numeric_limits<int>::max();
// set response time
if (firstTimeRunning((*readyQueue)[hrr])) (*readyQueue)[hrr].setResponseTime(_elapsedTime);
Simulator::DebugLog(_elapsedTime,
"Process " + std::to_string((*readyQueue)[hrr].getPID()) + " running");
// set as running process
runningList->push_back((*readyQueue)[hrr]);
readyQueue->erase(readyQueue->begin()+hrr);
return true;
} else return false;
}
catch (...){
std::cout << "Erro no escalonamento. Nenhum processo escalonado\n";
return false;
}
}
/***
* Priority scheduling algorithm
* Used to short-term Scheduling
* @return process with max(priority) in readyQueue
*/
static bool PRIORITY(std::vector<Process> *readyQueue, std::vector<Process> *runningList, int* _quantum, double _elapsedTime) {
try {
if (!readyQueue->empty()) {
int maxpriority = (*readyQueue)[0].getPriority(), priority = 0, i = 0;
for (Process process: (*readyQueue)) {
if (process.getPriority() > priority) {
priority = process.getPriority();
maxpriority = i;
} i++;
}
// set Quantum as limitless
(*_quantum) = std::numeric_limits<int>::max();
// set response time
if (firstTimeRunning((*readyQueue)[maxpriority])) (*readyQueue)[maxpriority].setResponseTime(_elapsedTime);
Simulator::DebugLog(_elapsedTime,
"Process " + std::to_string((*readyQueue)[maxpriority].getPID()) + " running");
// set as running process
runningList->push_back((*readyQueue)[maxpriority]);
readyQueue->erase(readyQueue->begin()+maxpriority);
return true;
} else return false;
}
catch (...) {
std::cout << "Erro no escalonamento. Nenhum processo escalonado\n";
return false;
}
}
/***
* Lottery scheduling algorithm w/ quantum = 2
* Used to short-term Scheduling
* @return a semi-randomly chosen process, each process has (process_priority+1)*10 tickets
*/
static bool LOTTERY(std::vector<Process> *readyQueue, std::vector<Process> *runningList, int* _quantum, double _elapsedTime) {
try {
if (!readyQueue->empty()) {
uint32_t countTickets = 0, winner = 0, i = 0;
// set ticket-range for each process
for (; i < (*readyQueue).size(); i++) {
(*readyQueue)[i].firstTicket = countTickets;
countTickets += ((*readyQueue)[i].getPriority() + 1) * 10;
(*readyQueue)[i].lastTicket = countTickets;
} i = 0;
// make a random coice for ticket
srand((unsigned)time(0));
winner = rand()%(countTickets + 1);
// get the winner process
for (Process process: (*readyQueue))
if (process.firstTicket <= winner && process.lastTicket >= winner) {
winner = i;
break;
} else i++;
// set Quantum as 2
(*_quantum) = 2;
// set response time
if (firstTimeRunning((*readyQueue)[winner])) (*readyQueue)[winner].setResponseTime(_elapsedTime);
Simulator::DebugLog(_elapsedTime,
"Process " + std::to_string((*readyQueue)[winner].getPID()) + " running");
// set as running process
runningList->push_back((*readyQueue)[winner]);
readyQueue->erase(readyQueue->begin()+winner);
return true;
} else return false;
}
catch (...) {
std::cout << "Erro no escalonamento. Nenhum processo escalonado\n";
return false;
}
}
/***
* Round Robin (RR) scheduling algorithm w/ quantum = 2
* Used to short-term Scheduling
* @return (*readyQueue)[0]
*/
static bool RR(std::vector<Process>* readyQueue, std::vector<Process>* runningList, int* _quantum, double _elapsedTime) {
try {
if (!readyQueue->empty()) {
// set Quantum as 2
(*_quantum) = 2;
// set response time
if (firstTimeRunning((*readyQueue)[0])) (*readyQueue)[0].setResponseTime(_elapsedTime);
Simulator::DebugLog(_elapsedTime,
"Process " + std::to_string((*readyQueue)[0].getPID()) + " running");
// set process as running
if (!(*runningList).empty()) {
(*readyQueue).push_back((*runningList)[0]);
(*runningList)[0] = (*readyQueue)[0];
} else (*runningList).push_back((*readyQueue)[0]);
readyQueue->erase(readyQueue->begin());
return true;
} else return false;
} catch (...) {
std::cout << "Erro no escalonamento. Nenhum processo escalonado\n";
return false;
}
}
/***
* State Dependent (SD) scheduling algorithm w/ quantum = maxProcessMultiprogramming / size(readyQueue)
* Used to short-term Scheduling
* @return (*readyQueue)[0]
*/
static bool SD(std::vector<Process>* readyQueue, std::vector<Process>* runningList, int* _quantum, double _elapsedTime) {
try {
if (!readyQueue->empty()) {
// set Quantum
(*_quantum) = maxProcessMultiprogramming / (*readyQueue).size();
// set response time
if (firstTimeRunning((*readyQueue)[0])) (*readyQueue)[0].setResponseTime(_elapsedTime);
Simulator::DebugLog(_elapsedTime,
"Process " + std::to_string((*readyQueue)[0].getPID()) + " running");
// set process as running
runningList->push_back((*readyQueue)[0]);
readyQueue->erase(readyQueue->begin());
return true;
} else return false;
} catch (...) {
std::cout << "Erro no escalonamento. Nenhum processo escalonado\n";
return false;
}
}
/***
* Feedback scheduling algorithm
* Used to short-term Scheduling
* @return (*readyQueue)[minpriority]
*/
static bool FEEDBACK(std::vector<Process> *readyQueue, std::vector<Process> *runningList, int* _quantum, double _elapsedTime) {
try {
if (!readyQueue->empty()) {
for (Process process: (*readyQueue)){
if (process.getTimesExecuted() == 0) process.setPriority(0);
else if (process.getTimesExecuted() == 1) process.setPriority(1);
else if (process.getTimesExecuted() == 2) process.setPriority(2);
else if (process.getTimesExecuted() >= 3) process.setPriority(3);
}
int minpriority = 0, priority = (*readyQueue)[0].getPriority(), i = 0;
for (Process process: (*readyQueue)) {
if (process.getPriority() < priority) {
priority = process.getPriority();
minpriority = i;
} i++;
}
(*readyQueue)[minpriority].incrementTimesExecuted();
// set Quantum according to priority
if (priority == 0) (*_quantum) = 1;
else if (priority == 1) (*_quantum) = 2;
else if (priority == 2) (*_quantum) = 4;
else if (priority == 3) (*_quantum) = 8;
// set response time
if (firstTimeRunning((*readyQueue)[minpriority])) (*readyQueue)[minpriority].setResponseTime(_elapsedTime);
Simulator::DebugLog(_elapsedTime,
"Process " + std::to_string((*readyQueue)[minpriority].getPID()) + " running");
// set as running process
runningList->push_back((*readyQueue)[minpriority]);
readyQueue->erase(readyQueue->begin()+minpriority);
return true;
} else return false;
}
catch (...) {
std::cout << "Erro no escalonamento. Nenhum processo escalonado\n";
return false;
}
}
}
#endif //SIMPLE_OS_SIMULATOR_ALGORITHMS_H