-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathHuffmanTree.java
304 lines (263 loc) · 7.88 KB
/
HuffmanTree.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
package general;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.PriorityQueue;
/*
* Instructions:
* First: Read through the assignment specification, make sure you understand what the assignment is asking for.
* Second: There are number of "TODO" instructions within this code, make sure to complete all of them fully.
* Third: Test you code.
*/
// TODO: Name and Pledge
// Pledge: I pledge my honor that I have abided by the Stevens Honor System
// Name: Aparajita Rana
/**
* HW4 CS284 Spring 2019
* Implements a Huffman encoding tree.
* The included code has been commented for the student's benefit, feel free to read through it.
*/
public class HuffmanTree {
// ******************** Start of Stub Code ******************** //
// ************************************************************ //
/** Node<E> is an inner class and it is abstract.
* There will be two kinds
* of Node, one for leaves and one for internal nodes. */
abstract static class Node implements Comparable<Node>{
/** The frequency of all the items below this node */
protected int frequency;
public Node(int freq) {
this.frequency = freq;
}
/** Needed for the Minimum Heap used later in this stub. */
public int compareTo(Node other) {
return this.frequency - other.frequency;
}
}
/** Leaves of a Huffman tree contain the data items */
protected static class LeafNode extends Node {
// Data Fields
/** The data in the node */
protected char data;
/** Constructor to create a leaf node (i.e. no children) */
public LeafNode(char data, int freq) {
super(freq);
this.data = data;
}
/** toString method */
public String toString() {
return "[value= "+this.data + ",freq= "+frequency+"]";
}
}
/** Internal nodes contain no data,
* just references to left and right subtrees */
protected static class InternalNode extends Node {
/** A reference to the left child */
protected Node left;
/** A reference to the right child */
protected Node right;
/** Constructor to create an internal node */
public InternalNode(Node leftC, Node rightC) {
super(leftC.frequency + rightC.frequency);
left = leftC; right = rightC;
}
public String toString() {
return "(freq= "+frequency+")";
}
}
// Enough space to encode all "extended ascii" values
// This size is probably overkill (since many of the values are not "printable" in the usual sense)
private static final int codex_size = 256;
/* Data Fields for Huffman Tree */
private Node root;
public HuffmanTree(String s) {
root = buildHuffmanTree(s);
}
/**
* Returns the frequencies of all characters in s.
* @param s
* @return
*/
public static int[] frequency(String s) {
int[] freq = new int[codex_size];
for (char c: s.toCharArray()) {
freq[c]++;
}
return freq;
}
/**
* Builds the actual Huffman tree for that particular string.
* @param s
* @return
*/
private static Node buildHuffmanTree(String s) {
int[] freq = frequency(s);
// Create a minimum heap for creating the Huffman Tree
// Note to students: You probably won't know what this data structure
// is yet, and that is okay.
PriorityQueue<Node> min_heap = new PriorityQueue<Node>();
// Go through and create all the nodes we need
// as in, all the nodes that actually appear in our string (have a frequency greater then 0)
for(int i = 0; i < codex_size; i++) {
if (freq[i] > 0) {
// Add a new node (for that character) to the min_heap, notice we have to cast our int i into a char.
min_heap.add(new LeafNode((char) i, freq[i]));
}
}
// Edge case (string was empty)
if (min_heap.isEmpty()) {
throw new NullPointerException("Cannot encode an empty String");
}
// Now to create the actual Huffman Tree
// NOTE: this algorithm is a bit beyond what we cover in cs284,
// you'll see this in depth in cs385
// Merge smallest subtrees together
while (min_heap.size() > 1) {
Node left = min_heap.poll();
Node right = min_heap.poll();
Node merged_tree = new InternalNode(left, right);
min_heap.add(merged_tree);
}
// Return our structured Huffman Tree
return min_heap.poll();
}
// ******************** End of Stub Code ******************** //
// ********************************************************** //
public String bitsToString(Boolean[] encoding) {
String total="";
if(encoding.length==0)
{
return null;
}
for(boolean check : encoding)
{
if(check)
{
total=total+"1";
}
else
{
total=total+"0";
}
}
}
public String toString(int count, Node curr) {
// TODO Complete toString method (see assignment specification)
// HINT: Might need helper method for preOrderTraversal
String s="";
for(int x=0;x<count;x++)
{
s=s+" ";
}
if(curr instanceof InternalNode)
{
InternalNode one=(InternalNode) curr;
s=s+"(frequency: "+one.frequency+")\n";
s=s+toString(count+1,one.left);
s=s+toString(count+1,one.right);
}
else
{
LeafNode two= (LeafNode) curr;
s=s+"[value= "+two.data+", frequency= "+two.frequency+" ]\n";
}
return s;
}
public String toString()
{
return toString(0,root).toString();
}
public String decode(Boolean[] coding) {
Node curr=root;
String y = "";
for(int x=0; x<coding.length;x++)
{
if(coding[x])
{
curr=((InternalNode)curr).right;
if(curr instanceof LeafNode) {
y+=((LeafNode) curr).data;
curr=root;
}
}
else {
curr=((InternalNode)curr).left;
if(curr instanceof LeafNode) {
y+=((LeafNode)curr).data;
curr=root;
}
}
}
return y;
}
public Boolean[] encode(String inputText) {
String[] vals=inputText.split("");
String num="";
for(int x=0; x<vals.length;x++)
{
String a=encodeHelper(vals[x].charAt(0), root, "");
if (a.equals("")) throw new IllegalArgumentException();
else num+=a;
}
Boolean[] end= new Boolean[num.length()];
String[] valnum=num.split("");
for(int x=0; x<valnum.length;x++)
{
if(valnum[x]=="0")
{
end[x]=false;
}
else
end[x]=true;
}
return end;
}
public String encodeHelper(char i, Node n, String x)
{
if(n==null)
return "";
if(n instanceof LeafNode)
{
if(((LeafNode) n).data == i)
{
return x;
}
else
return "";
}
return encodeHelper(i, ((InternalNode)n).left,x+"0")+encodeHelper(i, ((InternalNode)n).right,x+"1");
}
public Boolean[] efficientEncode(String inputText) {
HashMap<Character, String> sean = new HashMap<Character, String>();
efficient(this.root, "", sean);
String x = "";
for (int i = 0; i < inputText.length(); i++){
if (sean.containsKey(inputText.charAt(i))) x+= sean.get(inputText.charAt(i));
else throw new IllegalArgumentException();
}
Boolean[] s = new Boolean[x.length()];
for (int i = 0; i < x.length(); i++){
if (x.substring(i,i+1).equals("1")) s[i] = true;
else s[i] = false;
}
return s;
}
private void efficient(Node n, String x, HashMap h){
//check m
if (n == null) return;
//check if leaf node
if (n instanceof LeafNode){
h.put(((LeafNode)n).data, x);
}
//check left and right
else {
efficient(((InternalNode)n).left, x+"0", h);
efficient(((InternalNode)n).right, x+"1", h);
}
}
public static void main(String[] args) {
// Code to see if stuff works...
String s = "Some string you want to encode";
HuffmanTree t = new HuffmanTree(s); // Creates specific Huffman Tree for "s"
// Now you can use encode, decode, and toString to interact with your specific Huffman Tree
}
}