1
1
2
-
3
2
X = read("tmp/waves.csv", format="csv")
4
3
y = read("tmp/labels.csv", format="csv")
5
4
@@ -11,42 +10,25 @@ Xy_shuffled = Xy_shuffled[,1:num_col] # Remove the random column
11
10
X_shuffled = Xy_shuffled[,1:(num_col-1)] # Features, excluding the last column which is labels
12
11
y_shuffled = Xy_shuffled[,num_col] # Labels, the last column
13
12
14
-
15
13
[X_train, X_test, y_train, y_test] = split(X=X_shuffled, Y=y_shuffled, seed= 13)
16
14
17
- # Preprocess with fft Optionally move before split.
18
15
[X_train_re, X_train_im] = stft(X_train, 4, 2)
19
16
[X_test_re, X_test_im] = stft(X_test, 4, 2)
20
17
21
-
22
18
X_train_re_sq = X_train_re^2
23
19
X_train_im_sq = X_train_im^2
24
20
25
-
26
21
X_test_re_sq = X_test_re^2
27
22
X_test_im_sq = X_test_im^2
28
23
29
-
30
- # Sum the squared matrices
31
24
sum_X_train_sq = X_train_re_sq + X_train_im_sq
32
25
sum_X_test_sq = X_test_re_sq + X_test_im_sq
33
26
34
- # Compute the square root of each element in the sum matrix to get the magnitudes
35
27
magnitudes_train = sqrt(sum_X_train_sq)
36
28
magnitudes_test = sqrt(sum_X_test_sq)
37
29
38
30
bias = lm(X=magnitudes_train, y=y_train, reg=1e-1, maxi=10, verbose=TRUE)
39
31
predictions = lmPredict(X=magnitudes_test, B=bias, verbose=FALSE)
40
32
41
- #sign_predictions = sign(predictions)
42
- #sign_Y = sign(y_test)
43
-
44
- #correct = sum(sign_predictions == sign_Y)
45
- #total = nrow(y_test)
46
- #accuracy = correct / total
47
-
48
- #print(toString(predictions))
49
- #print(toString(accuracy))
50
-
51
- R = lmPredictStats(yhat=predictions, ytest=y_test, lm=TRUE)
52
- print(toString(R))
33
+ accuracy = auc(Y=y_test, P=predictions)
34
+ print(toString(accuracy))
0 commit comments