forked from PfGBM8/Phishing-Detection
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathisolation.py
361 lines (305 loc) · 12.2 KB
/
isolation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# Author:Janet Chou
from sklearn.ensemble import IsolationForest
from sklearn.externals import joblib
from sklearn import ensemble
from sklearn.model_selection import cross_val_score
from sklearn.metrics import accuracy_score,precision_score,recall_score,f1_score,classification_report,confusion_matrix
from sklearn.feature_selection import SelectKBest,SelectPercentile
from sklearn.feature_selection import chi2
import jieba
import re
from bs4 import BeautifulSoup
import os
import numpy as np
import codecs
from sklearn.model_selection import GridSearchCV
import matplotlib.pyplot as plt
import time
np.set_printoptions(suppress=True)
# mainfile='./data/file_list_20170430_new的副本.txt'
# WebDirectory='./data/file的副本/'
#获得URLkeyword ;URLchar;action;title
def get_dic():
URLKeyword, URLchar, action, title = [], [], {}, {}
with open('./dict/P_url_key_list','r') as f1:
for i in f1:
URLKeyword.append(i.strip())
with open('./dict/URL_keyword.txt','r') as f2:
for j in f2:
URLchar.append(j.strip().split(',')[0].lower())
with open('./dict/unique_action.txt','r') as f3:
for z in f3:
action[z.strip()] = 0
with open('./dict/unique_title.txt','r') as f4:
for h in f4:
title[h.strip()] = 0
return URLKeyword, URLchar, action, title
def URL_feature(data, URLKeyword, URLchar):
data = data.lower()
# 钓鱼网站关键字特征(login,qrcode)
URL_Pkey_list = [data.count(key) for key in URLKeyword]
IPcheck = 0
pattern = re.compile(r'(\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3})')
result = re.findall(pattern, data)
if len(result)>0:
IPcheck = 1
http_result = 0
if data.startswith('https://'):
http_result = 1
data = data[8:]
elif data.startswith('http://'):
data = data[7:]
# 高频字母特征
Char_Counts = [data.count(char) for char in URLchar]
url_len = len(data)
np_chars = np.asarray(Char_Counts)
t1 = [np_chars.sum(), np_chars.max(), np_chars.std(), np_chars.mean(), sum(np_chars > 0)]
num_chars_per = np_chars.sum() / float(url_len)
t2 = np.asarray([IPcheck, http_result, url_len, num_chars_per] + Char_Counts)
return np.hstack((t1, t2, np.asarray(URL_Pkey_list)))
def Web_feature(Web_data, title, action, MD5_list):
P_Feature = [
'alert',
'register',
'login',
'qrcode',
'javascript:alert_login('')'
]
try:
soup = BeautifulSoup(Web_data, "html.parser")
# 关键词标签
cf_count = [Web_data.count(cf) for cf in P_Feature]
doc_length = len(Web_data)
# ------- feature for p---------#
inputs_h = soup.findAll('input', {'type': 'hidden'})
inputs_b = soup.findAll('input', {'type': 'button'})
buttons = soup.findAll('button')
scripts = soup.findAll('script')
imgs = soup.findAll('img')
forms = soup.findAll('form', {'method': 'post'})
scripts_len_list = [len(str(scr)) for scr in scripts]
script_len = sum(scripts_len_list)
script_len_per = script_len / float(doc_length)
num_scripts = len(scripts)
num_h_inputs = len(inputs_h)
num_b_inputs = len(inputs_b)
num_btns = len(buttons)
num_img = len(imgs)
num_forms = len(forms)
p_t_list = [0] * (len(title.keys()) + 1)
p_f_list = [0] * (len(action.keys()) + 1)
if soup.title:
t_title = soup.title.string
if t_title:
t_seg = jieba.cut(t_title)
for seg in t_seg:
key_index = title.get(seg, -1)
p_t_list[key_index] += 1
t1 = np.asarray(p_t_list)
t_np = np.hstack((t1[:-1], [t1.sum(), t1.max(), t1.std(), t1.mean(), sum(t1 > 0)]))
for i in forms:
key_index = action.get(i.get('action'), -1)
p_f_list[key_index] += 1
t2 = np.asarray(p_f_list)
f_np = np.hstack((t2[:-1], [t2.sum(), t2.max(), t2.std(), t2.mean(), sum(t2 > 0)]))
other = np.asarray(
[doc_length, script_len, script_len_per, num_scripts, num_h_inputs, num_b_inputs, num_btns, num_img,
num_forms] + cf_count)
return np.hstack((t_np, f_np, other))
except:
print("wrong")
print(MD5_list)
return np.asarray([0]*152)
def test_RandomForestClassifier(*data):
'''
测试 RandomForestClassifier 的用法
:param data: 可变参数。它是一个元组,这里要求其元素依次为:训练样本集、测试样本集、训练样本的标记、测试样本的标记
:return: None
'''
X_train,X_test,y_train,y_test=data
clf=ensemble.RandomForestClassifier(bootstrap=True,criterion='gini',max_depth=50,n_estimators=142)
clf.fit(X_train,y_train)
y_pred = clf.predict(X_test)
print("Traing Score:%f"%clf.score(X_train,y_train))
print("Testing Score:%f"%clf.score(X_test,y_test))
return y_pred, y_test
def feature_selection(X,Y,num):
Selector = SelectKBest(chi2, k=num)
Selector.fit(X,Y)
return Selector.transform(X),Y,Selector.get_support(True)
def evaluate_model(y_true,y_pred):
print('Accuracy Score(normalize=True):', accuracy_score(y_true, y_pred, normalize=True))
# print('Precision Score:', precision_score(y_true, y_pred,pos_label=1))
# print('Recall Score:', recall_score(y_true, y_pred,pos_label=1))
# print('F1 Score:', f1_score(y_true, y_pred,pos_label=1))
print('Classification Report:\n', classification_report(y_true, y_pred,labels=[1,-1],target_names=["Normal Website", "Hidden Link Website"]))
print('Confusion Matrix:\n', confusion_matrix(y_true, y_pred, labels=[1, -1]))
#遍历文件,获得MD5目录和标签y
def traverse_directory(WebDirectory,mainfile):
count=0
MD5_list = list()
flag_list = list()
URL_list = list()
with open(mainfile,'r') as f:
for i in f:
flag=i.split(',',4)[1]
if flag=='n' and count < 3930:
flag_list.append(1)
MD5 = i.split(',', 4)[2]
each_file = os.path.join(WebDirectory, MD5)
MD5_list.append(each_file)
URL_list.append(i.strip().split(',',4)[3])
count+=1
elif flag=='p':
flag_list.append(-1)
MD5 = i.split(',', 4)[2]
each_file = os.path.join(WebDirectory, MD5)
MD5_list.append(each_file)
URL_list.append(i.strip().split(',', 4)[3])
return MD5_list,flag_list,URL_list
def traverse_directory_t(WebDirectory,mainfile):
count=0
MD5_list = list()
flag_list = list()
URL_list = list()
with open(mainfile,'r') as f:
for i in f:
flag=i.split(',',4)[1]
if flag=='n' and count < 1680 :
flag_list.append(1)
MD5 = i.split(',', 4)[2]
each_file = os.path.join(WebDirectory, MD5)
MD5_list.append(each_file)
URL_list.append(i.strip().split(',',4)[3])
count+=1
elif flag=='p':
flag_list.append(-1)
MD5 = i.split(',', 4)[2]
each_file = os.path.join(WebDirectory, MD5)
MD5_list.append(each_file)
URL_list.append(i.strip().split(',', 4)[3])
return MD5_list,flag_list,URL_list
def read_file(filename):
try:
f=codecs.open(filename,'r',encoding='utf-8')
Web_data=f.readlines()
# print(filename)
# print('******')
Web_data = '\n'.join(Web_data)
f.close()
except:
f=codecs.open(filename,'r',encoding='gb18030')
Web_data = f.readlines()
# print(Web_data)
# print(filename)
# print('******')
Web_data = '\n'.join(Web_data)
f.close()
return Web_data
def model_complexity(*data):
X_train, X_test, Y_train, Y_test = data
fig=plt.figure()
ax=fig.add_subplot(1,1,1)
training_scores=[]
testing_scores=[]
max_samples=range(70,270,20)
for con in max_samples:
#train model
# tuned_parameters = {'n_estimators': range(10, 120, 10), "max_samples": range(70, 270, 20),'contamination'
# }
clf = IsolationForest(contamination=0.06,n_estimators=90,max_samples=150,bootstrap=True)
clf.fit(X_train,Y_train)
# print("best parameter:", clf.best_params_)
# print(clf.grid_scores_)
# joblib.dump(clf,'Isolation_model.m')
y_pred = clf.predict(X_train)
print('Accuracy Score(normalize=True):', accuracy_score(Y_train, y_pred, normalize=True))
# evaluate_model(Y_train, y_pred)
training_scores.append(recall_score(Y_train, y_pred, pos_label=-1))
# print("Testing Score:%f"%clf.score(X_test,y_test))
#test model
y_tpred = clf.predict(X_test)
testing_scores.append(recall_score(Y_test, y_tpred, pos_label=-1))
# print('Accuracy Score(normalize=True):', accuracy_score(Y_test, y_tpred, normalize=True))
# evaluate_model(Y_test, y_tpred)
print("training score_maxdepth:", training_scores)
print("testing score_maxdepth:", testing_scores)
ax.plot(max_samples, training_scores, label="Training Score", color='r', linestyle='--')
ax.plot(max_samples, testing_scores, label="Testing Score", color='b')
ax.set_xlabel("Max Samples")
ax.set_ylabel("Recall Score")
ax.legend(loc="lower right")
ax.set_ylim(0.4, 1.05, 0.2)
plt.grid(axis='y')
# plt.ylim(0.4,1)
plt.suptitle("Isolation Forest Classifier")
plt.savefig('figure3.jpg')
def main():
start = time.clock()
URLKeyword, URLchar, action, title = get_dic()
#load training dataset
mainfile = './data/file_list_20170430_new的副本.txt'
WebDirectory = './data/file的副本/'
MD5_list, flag_list, URL_list = traverse_directory(WebDirectory, mainfile)
X_train = list()
Y_train = flag_list
for i in range(len(MD5_list)):
URL = URL_list[i]
Web_data = read_file(MD5_list[i])
web_vec = Web_feature(Web_data, title, action, MD5_list[i])
URL_vec = URL_feature(URL, URLKeyword, URLchar)
feature = np.hstack((web_vec, URL_vec))
X_train.append(feature)
# print(len(feature))
print(len(X_train),len(Y_train))
X_train = np.asarray(X_train)
Y_train = np.asarray(Y_train)
print(X_train.shape,Y_train.shape)
#feature selection
# for a_fea in range(70,60,-2):
X_train, Y_train, F_index= feature_selection(X_train, Y_train,70)
# print(F_index)
#train model
# tuned_parameters = {'n_estimators': range(10, 120, 10), "max_samples": range(70, 270, 20),'contamination'
# }
clf = IsolationForest(contamination=0.06,n_estimators=90,max_samples=150,bootstrap=True)
clf.fit(X_train,Y_train)
# print("best parameter:", clf.best_params_)
# print(clf.grid_scores_)
# joblib.dump(clf,'Isolation_model.m')
middle = time.clock()
print(middle-start)
y_pred = clf.predict(X_train)
print('Accuracy Score(normalize=True):', accuracy_score(Y_train, y_pred, normalize=True))
evaluate_model(Y_train, y_pred)
end=time.clock()
print(end-middle)
# print("Testing Score:%f"%clf.score(X_test,y_test))
#load testing dataset
mainfile1 = './data/file_list_10000.txt'
WebDirectory1 = './data/file1/'
MD5_list1, flag_list1, URL_list1 = traverse_directory_t(WebDirectory1, mainfile1)
X_test = list()
Y_test = flag_list1
for h in range(len(MD5_list1)):
s_fea = []
URL1 = URL_list1[h]
Web_data1 = read_file(MD5_list1[h])
web_vec1 = Web_feature(Web_data1, title, action, MD5_list1[h])
URL_vec1 = URL_feature(URL1, URLKeyword, URLchar)
feature1 = np.hstack((web_vec1, URL_vec1))
for j in F_index:
s_fea.append(feature1[j])
X_test.append(s_fea)
# print("********")
print(len(X_test),len(Y_test))
#test model
y_tpred = clf.predict(X_test)
print('Accuracy Score(normalize=True):', accuracy_score(Y_test, y_tpred, normalize=True))
evaluate_model(Y_test, y_tpred)
end2=time.clock()
print(end2-end)
if __name__=="__main__":
main()