-
-
Notifications
You must be signed in to change notification settings - Fork 624
/
model_based.py
411 lines (304 loc) · 14.4 KB
/
model_based.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
'''
# Needed only if you run it on Google Colab
from pyvirtualdisplay import Display
display = Display(visible=0, size=(1024, 768))
display.start()
import os
os.environ["DISPLAY"] = ":" + str(display.display) + "." + str(display.screen)'''
from sklearn.preprocessing import StandardScaler
import roboschool
import torch
import torch.nn as nn
import torch.optim as optim
from torch.nn import functional as F
from tqdm import tqdm
import datetime
import time
import gym
import numpy as np
class NNDynamicModel(nn.Module):
'''
Model that predict the next state, given the current state and action
'''
def __init__(self, input_dim, obs_output_dim):
super(NNDynamicModel, self).__init__()
self.mlp = nn.Sequential(
nn.Linear(input_dim, 512),
nn.BatchNorm1d(num_features=512),
nn.ReLU(),
nn.Linear(512,256),
nn.BatchNorm1d(num_features=256),
nn.ReLU(),
nn.Linear(256, obs_output_dim)
)
def forward(self, x):
return self.mlp(x.float())
class NNRewardModel(nn.Module):
'''
Model that predict the reward given the current state and action
'''
def __init__(self, input_dim, reward_output_dim):
super(NNRewardModel, self).__init__()
self.mlp = nn.Sequential(
nn.Linear(input_dim, 512),
nn.BatchNorm1d(num_features=512),
nn.ReLU(),
nn.Linear(512,256),
nn.BatchNorm1d(num_features=256),
nn.ReLU(),
nn.Linear(256, reward_output_dim)
)
def forward(self, x):
return self.mlp(x.float())
def gather_random_trajectories(num_traj, env_name):
'''
Run num_traj random trajectories to gather information about the next state and reward.
Data used to train the models in a supervised way.
'''
dataset_random = []
env = gym.make(env_name)
game_rewards = []
for n in range(num_traj):
obs = env.reset()
while True:
sampled_action = env.action_space.sample()
new_obs, reward, done, _ = env.step(sampled_action)
dataset_random.append([obs, new_obs, reward, done, sampled_action])
obs = new_obs
game_rewards.append(reward)
if done:
break
# print some stats
print('Mean R:',np.round(np.sum(game_rewards)/num_traj,2), 'Max R:', np.round(np.max(game_rewards),2), np.round(len(game_rewards)/num_traj))
return dataset_random
def model_MSEloss(y_truth, y_pred, device):
'''
Compute the MSE (Mean Squared Error)
'''
y_truth = torch.FloatTensor(np.array(y_truth)).to(device)
return F.mse_loss(y_pred.view(-1).float(), y_truth.view(-1))
def train_dyna_model(random_dataset, rl_dataset, env_model, rew_model, batch_size, max_model_iter, num_examples_added, ENV_LEARNING_RATE, REW_LEARNING_RATE, device):
'''
Train the two models that predict the next state and the expected reward
'''
env_optimizer = optim.Adam(env_model.parameters(), lr=ENV_LEARNING_RATE)
rew_optimizer = optim.Adam(rew_model.parameters(), lr=REW_LEARNING_RATE)
if len(rl_dataset) > 0:
'''
# To use only a fraction of the random dataset
rand = np.arange(len(random_dataset))
np.random.shuffle(rand)
rand = rand[:int(len(rl_dataset)*0.8)] # 80% of rl dataset
d_concat = np.concatenate([np.array(random_dataset)[rand], rl_dataset], axis=0)'''
# Concatenate the random dataset with the RL dataset. Used only in the aggregation iterations
d_concat = np.concatenate([random_dataset, rl_dataset], axis=0)
else:
d_concat = np.array(random_dataset)
# Split the dataset into train(80%) and test(20%)
D_train = d_concat[:int(-num_examples_added*1/5)]
D_valid = d_concat[int(-num_examples_added*1/5):]
print("len(D):", len(d_concat), 'len(Dtrain)', len(D_train))
# Shuffle the dataset
sff = np.arange(len(D_train))
np.random.shuffle(sff)
D_train = D_train[sff]
# Create the input and output for the train
X_train = np.array([np.concatenate([obs,act]) for obs,_,_,_,act in D_train]) # Takes obs and action
# Reward's output
y_rew_train = np.array([[rw] for _,_,rw,_,_ in D_train])
# Next state output
y_env_train = np.array([no for _,no,_,_,_ in D_train])
y_env_train = y_env_train - np.array([obs for obs,_,_,_,_ in D_train]) # y(state) = s(t+1) - s(t)
# Create the input and output array for the validation
X_valid = np.array([np.concatenate([obs,act]) for obs,_,_,_,act in D_valid]) # Takes obs and action
# Reward output
y_rew_valid = np.array([[rw] for _,_,rw,_,_ in D_valid])
# Next state output
y_env_valid = np.array([no for _,no,_,_,_ in D_valid])
y_env_valid = y_env_valid - np.array([obs for obs,_,_,_,_ in D_valid]) # y(state) = s(t+1) - s(t)
# Standardize the input features by removing the mean and scaling to unit variance
input_scaler = StandardScaler()
X_train = input_scaler.fit_transform(X_train)
X_valid = input_scaler.transform(X_valid)
# Standardize the outputs by removing the mean and scaling to unit variance
env_output_scaler = StandardScaler()
y_env_train = env_output_scaler.fit_transform(y_env_train)
y_env_valid = env_output_scaler.transform(y_env_valid)
rew_output_scaler = StandardScaler()
y_rew_train = rew_output_scaler.fit_transform(y_rew_train)
y_rew_valid = rew_output_scaler.transform(y_rew_valid)
# store all the scalers in a variable to later uses
norm = (input_scaler, env_output_scaler, rew_output_scaler)
losses_env = []
losses_rew = []
# go through max_model_iter supervised iterations
for it in tqdm(range(max_model_iter)):
# create mini batches of size batch_size
for mb in range(0, len(X_train), batch_size):
if len(X_train) > mb+BATCH_SIZE:
X_mb = X_train[mb:mb+BATCH_SIZE]
y_env_mb = y_env_train[mb:mb+BATCH_SIZE]
y_rew_mb = y_rew_train[mb:mb+BATCH_SIZE]
# Add gaussian noise with mean 0 and variance 0.0001 as in the paper
X_mb += np.random.normal(loc=0, scale=0.001, size=X_mb.shape)
## Optimization of the 'env_model' neural net
env_optimizer.zero_grad()
# forward pass of the model to compute the output
pred_state = env_model(torch.tensor(X_mb).to(device))
# compute the MSE loss
loss = model_MSEloss(y_env_mb, pred_state, device)
if it == (max_model_iter - 1):
losses_env.append(loss.cpu().detach().numpy())
# backward pass
loss.backward()
# optimization step
env_optimizer.step()
## Optimization of the 'rew_model' neural net
rew_optimizer.zero_grad()
# forward pass of the model to compute the output
pred_rew = rew_model(torch.tensor(X_mb).to(device))
# compute the MSE loss
loss = model_MSEloss(y_rew_mb, pred_rew, device)
if it == (max_model_iter - 1):
losses_rew.append(loss.cpu().detach().numpy())
# backward pass
loss.backward()
# optimization step
rew_optimizer.step()
# Evalute the models every 10 iterations and print the losses
if it % 10 == 0:
env_model.eval()
rew_model.eval()
pred_state = env_model(torch.tensor(X_valid).to(device))
pred_rew = rew_model(torch.tensor(X_valid).to(device))
env_model.train(True)
rew_model.train(True)
valid_env_loss = model_MSEloss(y_env_valid, pred_state, device)
valid_rew_loss = model_MSEloss(y_rew_valid, pred_rew, device)
print('..', it, valid_env_loss.cpu().detach().numpy(), valid_rew_loss.cpu().detach().numpy())
## Evaluate the MSE losses
env_model.eval()
rew_model.eval()
pred_state = env_model(torch.tensor(X_valid).to(device))
pred_rew = rew_model(torch.tensor(X_valid).to(device))
env_model.train(True)
rew_model.train(True)
valid_env_loss = model_MSEloss(y_env_valid, pred_state, device)
valid_rew_loss = model_MSEloss(y_rew_valid, pred_rew, device)
return np.mean(losses_env), np.mean(losses_rew), valid_env_loss.cpu().detach().numpy(), valid_rew_loss.cpu().detach().numpy(), norm
def multi_model_based_control(env_model, rew_model, real_obs, num_sequences, horizon_length, sample_action, norm, device):
'''
Use a random-sampling shooting method, generating random action sequences. The first action with the highest reward of the entire sequence is returned
'''
best_reward = -1e9
best_next_action = []
input_scaler, env_output_scaler, rew_output_scaler = norm
m_obs = np.array([real_obs for _ in range(num_sequences)])
# array that contains the rewards for all the sequence
unroll_rewards = np.zeros((num_sequences, 1))
first_sampled_actions = []
env_model.eval()
rew_model.eval()
## Create a batch of size 'num_sequences' (number of trajectories) to roll the models 'horizon_length' times.
## i.e. roll a given number of trajectories in a single batch (to increase speed)
for t in range(horizon_length):
# sampled actions for each sequence
sampled_actions = [sample_action() for _ in range(num_sequences)]
# scale the input
models_input = input_scaler.transform(np.concatenate([m_obs, sampled_actions], axis=1))
# compute the next state for each sequence
pred_obs = env_model(torch.tensor(models_input).to(device))
# and the reward
pred_rew = rew_model(torch.tensor(models_input).to(device))
# inverse scaler transofrmation
pred_obs = env_output_scaler.inverse_transform(pred_obs.cpu().detach().numpy())
# and add previous observation
m_obs = pred_obs + m_obs
assert(pred_rew.cpu().detach().numpy().shape == unroll_rewards.shape)
# sum of the expected rewards
unroll_rewards += pred_rew.cpu().detach().numpy()
if t == 0:
first_sampled_actions = sampled_actions
env_model.train(True)
rew_model.train(True)
# Best the position of the sequence with the higher reward
arg_best_reward = np.argmax(unroll_rewards)
best_sum_reward = unroll_rewards[arg_best_reward].squeeze()
# take the first action of this sequence
best_action = first_sampled_actions[arg_best_reward]
return best_action, best_sum_reward
ENV_NAME = 'RoboschoolAnt-v1'
# Main loop hyperp
AGGR_ITER = 3
STEPS_PER_AGGR = 20000
# Random MB hyperp
NUM_RAND_TRAJECTORIES = 1000
# 'cuda' or 'cpu'
device = 'cuda'
# Supervised Model Hyperp
ENV_LEARNING_RATE = 1e-3
REW_LEARNING_RATE = 1e-3
BATCH_SIZE = 512
TRAIN_ITER_MODEL = 55
# Controller Hyperp
HORIZION_LENGTH = 10
NUM_ACTIONS_SEQUENCES = 20000
save_video_test = True
now = datetime.datetime.now()
date_time = "{}_{}.{}.{}".format(now.day, now.hour, now.minute, now.second)
if __name__ == '__main__':
writer_name = 'MB_RL_'+ENV_NAME+'_'+date_time
print('Name:',writer_name, device)
# create the environment
env = gym.make(ENV_NAME)
if save_video_test:
env = gym.wrappers.Monitor(env, "VIDEOS/TEST_VIDEOS_"+writer_name, video_callable=lambda episode_id: True)
obs = env.reset()
# gather the dataset of random sequences
rand_dataset = gather_random_trajectories(NUM_RAND_TRAJECTORIES, ENV_NAME)
rl_dataset = []
# Initialize the models
env_model = NNDynamicModel(env.action_space.shape[0] + env.observation_space.shape[0], env.observation_space.shape[0]).to(device)
rew_model = NNRewardModel(env.action_space.shape[0] + env.observation_space.shape[0], 1).to(device)
game_reward = 0
num_examples_added = len(rand_dataset)
for n_iter in range(AGGR_ITER):
# supervised training of the dataset (random and rl if it exists)
train_env_loss, train_rew_loss, valid_env_loss, valid_rew_loss, norm = train_dyna_model(rand_dataset, rl_dataset, env_model, rew_model, BATCH_SIZE, TRAIN_ITER_MODEL, num_examples_added, ENV_LEARNING_RATE, REW_LEARNING_RATE, device)
print('{} >> Eloss:{:.4f} EV loss:{:.4f} -- Rloss:{:.4f} RV loss:{:.4f}'.format(n_iter, train_env_loss, valid_env_loss, train_rew_loss, valid_rew_loss))
obs = env.reset()
num_examples_added = 0
game_reward = 0
game_pred_rews = []
rews = []
while num_examples_added < STEPS_PER_AGGR:
while True:
tt = time.time()
# Execute the control to roll the sequences and pick the first action of the sequence with the higher reward
action, pred_rew = multi_model_based_control(env_model, rew_model, obs, NUM_ACTIONS_SEQUENCES, HORIZION_LENGTH, env.action_space.sample, norm, device)
game_pred_rews.append(pred_rew)
# one step in the environment with the action returned by the controller
new_obs, reward, done, _ = env.step(action)
input_scaler, env_output_scaler, rew_output_scaler = norm
## Compute the reward and print some stats
models_input = input_scaler.transform([np.concatenate([obs, action])])
rew_model.eval()
p_rew = rew_model(torch.tensor(models_input).to(device))
rew_model.train(True)
unnorm_rew = rew_output_scaler.inverse_transform([float(p_rew.cpu().data[0])]).squeeze()
print(' >> ',len(game_pred_rews), 'gt:',np.round(reward,3), 'pred:',np.round(unnorm_rew, 3),
'sum:', np.round(pred_rew,3), '|', game_reward, np.round(time.time()-tt, 4), HORIZION_LENGTH)
# add the last step to the RL dataset
rl_dataset.append([obs, new_obs, reward, done, action])
num_examples_added += 1
obs = new_obs
game_reward += reward
# if the environment is done, reset it and print some stats
if done:
obs = env.reset()
print(' >> R: {:.2f}, Mean sum:{:.2f}, {}'.format(game_reward, np.mean(game_pred_rews), num_examples_added))
rews.append(game_reward)
game_reward = 0
game_pred_rews = []
break
print(' >> Mean: {:.2f}', np.mean(rews))