-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDisjointSets.cpp
133 lines (108 loc) · 3.15 KB
/
DisjointSets.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
// Disjoint Set Data Structure
// Author: Emil Stefanov
// Date: 03/28/06
// Implementaton is as described in http://en.wikipedia.org/wiki/Disjoint-set_data_structure
#include <cassert>
#include "DisjointSets.h"
DisjointSets::DisjointSets()
{
m_numElements = 0;
m_numSets = 0;
}
DisjointSets::DisjointSets(int count)
{
m_nodes.reserve(500);
m_numElements = 0;
m_numSets = 0;
AddElements(count);
}
DisjointSets::DisjointSets(const DisjointSets & s)
{
this->m_numElements = s.m_numElements;
this->m_numSets = s.m_numSets;
// Copy nodes
m_nodes.resize(m_numElements);
for(int i = 0; i < m_numElements; ++i)
m_nodes[i] = new Node(*s.m_nodes[i]);
// Update parent pointers to point to newly created nodes rather than the old ones
for(int i = 0; i < m_numElements; ++i)
if(m_nodes[i]->parent != NULL)
m_nodes[i]->parent = m_nodes[s.m_nodes[i]->parent->index];
}
DisjointSets::~DisjointSets()
{
for(int i = 0; i < m_numElements; ++i)
delete m_nodes[i];
m_nodes.clear();
m_numElements = 0;
m_numSets = 0;
}
// Note: some internal data is modified for optimization even though this method is consant.
int DisjointSets::FindSet(int elementId) const
{
assert(elementId < m_numElements);
Node* curNode;
// Find the root element that represents the set which `elementId` belongs to
curNode = m_nodes[elementId];
while(curNode->parent != NULL)
curNode = curNode->parent;
Node* root = curNode;
// Walk to the root, updating the parents of `elementId`. Make those elements the direct
// children of `root`. This optimizes the tree for future FindSet invokations.
curNode = m_nodes[elementId];
while(curNode != root)
{
Node* next = curNode->parent;
curNode->parent = root;
curNode = next;
}
return root->index;
}
void DisjointSets::Union(int setId1, int setId2)
{
assert(setId1 < m_numElements);
assert(setId2 < m_numElements);
if(setId1 == setId2)
return; // already unioned
Node* set1 = m_nodes[setId1];
Node* set2 = m_nodes[setId2];
// Determine which node representing a set has a higher rank. The node with the higher rank is
// likely to have a bigger subtree so in order to better balance the tree representing the
// union, the node with the higher rank is made the parent of the one with the lower rank and
// not the other way around.
if(set1->rank > set2->rank)
set2->parent = set1;
else if(set1->rank < set2->rank)
set1->parent = set2;
else // set1->rank == set2->rank
{
set2->parent = set1;
++set1->rank; // update rank
}
// Since two sets have fused into one, there is now one less set so update the set count.
--m_numSets;
}
void DisjointSets::AddElements(int numToAdd)
{
assert(numToAdd >= 0);
// insert and initialize the specified number of element nodes to the end of the `m_nodes` array
m_nodes.insert(m_nodes.end(), numToAdd, (Node*)NULL);
for(int i = m_numElements; i < m_numElements + numToAdd; ++i)
{
m_nodes[i] = new Node();
m_nodes[i]->parent = NULL;
m_nodes[i]->index = i;
m_nodes[i]->rank = 0;
}
// update element and set counts
m_numElements += numToAdd;
m_numSets += numToAdd;
}
int DisjointSets::NumElements() const
{
return m_numElements;
}
int DisjointSets::NumSets() const
{
return m_numSets;
}