-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathkeypad_combinations.py
97 lines (73 loc) · 2.35 KB
/
keypad_combinations.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
"""
Given a string keys that contains the keys that we pressed in a phone keypad,
create a function that returns all the possible combinations of characters that can be made.
Keypad keys and the characters that they can make:
0: +, 1: . , 2: ABC, 3: DEF, 4: GHI, 5: JKL, 6: MNO, 7: PQRS, 8: TUV, 9: WXYZ
"""
"""
0: [+]
1: [.]
2: [A,B,C]
3: [D,E,F]
...
Lets create a hashmap to map the keys to the values.
Input: "29"
Given an input, we need to create all possibilities.
""
/ \ \
A B C 3
/ \ \ \ /
W X Y Z W X.. 4*3
For each digit we have to try all possible ways.
Base case:
- position > len(keys): add the path and return
Recursive Step:
- Start with an empty string -> empty list
- For each possible character of digit, add the character to a possible path
- Recursively go down the tree
- When we have gone through all digits we append the current path to our result
- Pop the last element from the path
Since we have a maximum of 4 characters for every digit.
Time Complexity: O(4^n) being n the number of keys
Space Complexity: O(n) because we go down a tree the length of keys
Since we have to find all possible ways, we cannot do better than this.
"""
def keypadCombinations(keys):
key_to_char = {
"0": ["+"],
"1": ["."],
"2": ["A", "B", "C"],
"3": ["D", "E", "F"],
"4": ["G", "H", "I"],
"5": ["J", "K", "L"],
"6": ["M", "N", "O"],
"7": ["P", "Q", "R", "S"],
"8": ["T", "U", "V"],
"9": ["W", "X", "Y", "Z"],
}
result = []
def getAllPossibleCombs(keys, pos, current_path):
if pos == len(keys):
result.append("".join(current_path)) # O(n)
return
current_key = keys[pos]
for char in key_to_char[current_key]: # 4
current_path.append(char) # 1
getAllPossibleCombs(keys, pos + 1, current_path) # T(n-1)
current_path.pop() # 1
getAllPossibleCombs(keys, 0, [])
return result
"""
Complexity Analysis
T(0) = n
T(n) = 4( T(n-1) + 2 )
T(n) = 4T(n-1) + 8
= 4( 4T(n-2) + 8 ) + 8
= 4^2*T(n-2) + 4*8 + 8
= 4^2*(4T(n-3) + 8) + 4*8 + 8
= 4^3*T(n-3) + 8*4^2 + 8* 4 + 8
= 4^k*T(n-k) + 8*4^(k-1) + 8*4^(k-2) + 8^(k-3) .. + 8
= 4^n*T(0) + 8*4^(n-1) + ... + 8
= 4^n*n + 8^4....
= O(n*4^n)
"""