-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSet1.py
209 lines (192 loc) · 7.07 KB
/
Set1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
import codecs
import numpy as np
import base64
from Crypto.Cipher import AES
" ================ Check 1 =================== "
# hexd = "49276d206b696c6c696e6720796f757220627261696e206c696b65206120706f69736f6e6f7573206d757368726f6f6d"
# hexd = codecs.decode(hexd,encoding='hex')
# hexe = codecs.encode(hexd.strip(),encoding='base64')
# hexe = hexe.strip()
# print(hexe)
" ============================================ "
" ================= Check 2 ================== "
#
# hex1 = codecs.decode("1c0111001f010100061a024b53535009181c",encoding='hex')
# hex2 = codecs.decode("686974207468652062756c6c277320657965",encoding='hex')
# hex1 = list(hex1)
# hex2 = list(hex2)
# xor = np.bitwise_xor(hex1,hex2)
# xor = xor.tolist()
# print(codecs.encode(bytes(xor),encoding='hex'))
def xord(buffer1,buffer2):
"""
While I don't need to define a xor function when I could simply use numpy's bitwise_xor, I wanted a function I
could tweak more easily.
"""
xor = b''
# assert len(buffer1) == len(buffer2), 'Buffer1 and Buffer2 differ in Length, Can\'t Xor'
for i in range(len(buffer1)):
xor += bytes([buffer1[i]^buffer2[i]])
return xor
" ============================================ "
" ================= Check 3 ================== "
# hex = bytes.fromhex("1b37373331363f78151b7f2b783431333d78397828372d363c78373e783a393b3736")
def single_xor_crack(hex):
alph = list(" etaoinshrdlcumwfgypbvkjxqz")
alph.reverse()
candidates = list()
for i in range(256):
score = 0
output = b''
for byte in hex:
output += bytes([byte^i])
output = str(output,encoding='cp437')
print(output)
for letter in alph:
score += output.count(letter) * alph.index(letter)
candidates.append([score,output,i])
candidates.sort(reverse=True)
return candidates[0]
# print(candidates[0])
" ============================================ "
" ================= Check 4 ================== "
'''
Alternatively I could have used a more accurate weight of each plaintext candidate by comparing the total makeup of the
plaintext candidate to an expected letter distribution
'''
# alph = list(" etaoinshrdlcumwfgypbvkjxqz")
# alph.reverse()
# everyline = list()
#
# for line in open('4.txt'):
# line = line.strip()
# hex = bytes.fromhex(line)
# candidates = list()
# for i in range(256):
# score = 0
# output = b''
# for byte in hex:
# output += bytes([byte^i])
# for byte in output:
# char = chr(byte)
# if char in alph:
# score += alph.index(char)
# candidates.append([score,output,i])
# candidates.sort(reverse=True)
# everyline.append(candidates[0])
# everyline.sort(reverse=True)
# print(everyline[0])
" ============================================ "
" ================= Check 5 ================== "
# key = input('Please enter a key for use ==> ')
# plaintext = "Burning 'em, if you ain't quick and nimble\nI go crazy when I hear a cymbal"
# print('Plaintext\n===========================================')
# print(plaintext)
# print('===========================================')
def rep_xor_encrypt(plaintext,key):
ciphertext = b''
bytewise = bytes(plaintext,encoding='cp437')
hexkey = bytes(key,encoding='cp437')
for i in range(len(bytewise)):
ciphertext += bytes([bytewise[i]^hexkey[i%3]])
# print(chr(bytewise[i]))
return codecs.encode(ciphertext,encoding='hex')
# print(rep_xor_encrypt(plaintext,key))
" ============================================ "
" ================= Check 6 ================== "
# # str1 = bytes(input("String 1 => "),encoding='cp437')
# # str2 = bytes(input("String 2 => "),encoding='cp437')
#
def hammerdistance(str1,str2):
distance = 0
if len(str1) != len(str2):
print('Error: Strings not of same length.')
return
for i in range(len(str1)):
# print(bin(str1[i]^str2[i]))
distance += bin(str1[i]^str2[i]).count('1')
return distance
def normal_distance(ciphertext,keysize):
distance = 0
for i in range(len(ciphertext)//keysize-1):
distance += hammerdistance(ciphertext[i*keysize:(i+1)*keysize],ciphertext[(i+1)*keysize:(i+2)*keysize])
return distance/((len(ciphertext)/keysize-1)*keysize)
# # fname = input('Base64-encoded repeating-key XOR ciphertext file ==> ')
#
# fname = '6.txt'
# ciphertext = base64.b64decode(open(fname).read().strip())
# keysizes = list()
# alph = list(" etaoinshrdlcumwfgypbvkjxqz")
# alph.reverse()
# max = 0
#
# for keysize in range(2,40):
# candidate = normal_distance(ciphertext,keysize)
# keysizes.append([candidate,keysize])
# keysizes.sort()
# # loop for top three keysizes
# for p in range(4):
# avg = 0
# key = list()
# blocks = list()
# for i in range(keysizes[p][1]):
# blocks.append(ciphertext[i::keysizes[p][1]])
# for block in blocks:
# candidates = list()
# for i in range(256):
# score = 0
# output = b''
# for byte in block:
# output += bytes([byte^i])
# for byte in output:
# char = chr(byte)
# if char in alph:
# score += alph.index(char)
# candidates.append([score,chr(i),output])
# candidates.sort(reverse=True)
# # print(candidates[0])
# key.append(candidates[0][1])
# avg += candidates[0][0]
# avg = avg/keysize
# if avg > max:
# max = avg
# guessed_key = ''.join(key)
# print('Guessed key {} with average score {}'.format(''.join(key),avg))
#
# print('======= Guessed Key Decryption Confidence: {} ======='.format(max))
# plaintext = ''
# hexkey = bytes(guessed_key,encoding='cp437')
# for i in range(len(ciphertext)):
# plaintext += chr(ciphertext[i]^hexkey[i%len(hexkey)])
# # plaintext[i] = ciphertext[i]^hexkey[i%len(hexkey)]
# print(plaintext)
# # print(codecs.encode(''.join(plaintext),encoding='cp437'))
" ============================================ "
" ================= Check 7 ================== "
# fname = '7.txt'
# ciphertext = base64.b64decode(open(fname).read().strip())
# cipher = AES.new('YELLOW SUBMARINE',AES.MODE_ECB)
# plaintext = cipher.decrypt(ciphertext)
# print(codecs.decode(plaintext,encoding='ascii'))
" ============================================ "
" ================= Check 8 ================== "
# fname = '8.txt'
# for k in range(1,17): # variable block sizes
# max = 0
# linen = 1
# for line in open(fname):
# repeated = list()
# count = 0
# line = list(base64.b64decode(line))
# for i in range(len(line)-1):
# repeated.append(line[i:i+k])
# for block in repeated:
# count += repeated.count(block)
# if count > max:
# max = count
# candidate = bytes(line)
# location = linen
# linen += 1
# # print(k,location,max,codecs.encode(candidate,encoding='base64'))
# print('For block size {} I guess that line {} is in ECB mode with a score of {}.'.format(k,location,max))
" ============================================ "