-
Notifications
You must be signed in to change notification settings - Fork 371
/
Copy pathmason.py
824 lines (764 loc) Β· 32.4 KB
/
mason.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
import argparse
import re
import sys
from typing import List, Dict
import beaker
import os
import secrets
import string
from rich.console import Console
from rich.text import Text
import select
console = Console()
# ----------------------------------------------------------------------
# Open Instruct logic
OPEN_INSTRUCT_COMMANDS = [
"open_instruct/finetune.py",
"open_instruct/dpo_tune_cache.py",
"open_instruct/grpo_fast.py",
"open_instruct/grpo_vllm_thread_ray_gtrl.py",
"open_instruct/ppo2.py",
"open_instruct/ppo_vllm_thread_ray_gtrl.py",
"open_instruct/reward_modeling.py",
]
def parse_beaker_dataset(dataset_str):
splt = dataset_str.split(":")
if len(splt) != 2:
raise argparse.ArgumentError()
return {"mount_path": splt[0], "beaker": splt[1]}
def parse_env_var(env_var_str: str) -> Dict[str, str]:
"""Parse environment variable string in the format 'name=value'"""
if '=' not in env_var_str:
raise argparse.ArgumentTypeError(
f"Environment variable must be in format 'name=value', got: {env_var_str}"
)
name, value = env_var_str.split('=', 1)
if not name:
raise argparse.ArgumentTypeError("Environment variable name cannot be empty")
return {"name": name, "value": value}
NFS_CLUSTERS = [
"ai2/allennlp-cirrascale",
"ai2/aristo-cirrascale",
"ai2/climate-cirrascale",
"ai2/general-cirrascale",
"ai2/general-cirrascale-a5000",
"ai2/mosaic-cirrascale",
"ai2/mosaic-cirrascale-a100",
"ai2/pluto-cirrascale",
"ai2/prior-cirrascale",
"ai2/s2-cirrascale",
"ai2/s2-cirrascale-l40",
]
WEKA_CLUSTERS = [
"ai2/jupiter-cirrascale-2",
"ai2/saturn-cirrascale",
"ai2/neptune-cirrascale",
"ai2/allennlp-elara-cirrascale",
"ai2/ceres-cirrascale",
"ai2/ganymede-cirrascale",
]
GCP_CLUSTERS = [
"ai2/augusta-google-1"
]
INTERCONNECT_CLUSTERS = [
"ai2/jupiter-cirrascale-2",
"ai2/ceres-cirrascale",
"ai2/augusta-google-1",
]
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"--cluster",
type=str,
nargs="+",
help="Beaker clusters on which the job could be run.",
required=True,
)
parser.add_argument(
"--hostname",
type=str,
nargs="+",
help="Beaker hostname on which the job could be run.",
default=None
)
parser.add_argument("--max_retries", type=int, help="Number of retries", default=0)
parser.add_argument("--budget", type=str, help="Budget to use.", required=True)
parser.add_argument("--gpus", type=int, help="Number of gpus", default=0)
parser.add_argument("--num_nodes", type=int, help="Number of nodes", default=1)
parser.add_argument(
"--image",
type=str,
help="Beaker base image; usually fine to use AI2 base image.",
default="ai2/cuda11.8-cudnn8-dev-ubuntu20.04",
)
parser.add_argument(
"--workspace",
type=str,
help="The Beaker workspace to use. If not set, use your default.",
default=None,
)
parser.add_argument(
"--beaker_datasets",
nargs="*",
help="""Beaker datasets to mount. You may give more than one, separated by
spaces. Each dataset should be formatted like `[mount-point]:[beaker-dataset-id]`;
for instance `/models:01HQXGAYGCS6D4ZK51K83CM49Y`.
""",
type=parse_beaker_dataset,
default=[],
)
parser.add_argument(
"--description",
type=str,
help="Optionally, a description for this job in Beaker.",
default="Beaker-Mason job.",
)
parser.add_argument(
"--task_name",
type=str,
help="Name for the Beaker task.",
default="beaker_mason"
)
parser.add_argument(
"--priority", type=str, help="Beaker job priority.", default="normal"
)
parser.add_argument(
"--preemptible", action="store_true", help="If given, run as preemptible"
)
parser.add_argument(
"--pure_docker_mode", action="store_true", help="If given, run in pure docker mode"
)
parser.add_argument(
"--no_hf_cache_env", action="store_true", help="Getting deprecated; it does nothing"
)
parser.add_argument(
"--no_mount_nfs", action="store_true", help="Getting deprecated; it does nothing"
)
parser.add_argument(
"--resumable", action="store_true", help="If given, make the job resumable"
)
parser.add_argument(
"--no_auto_dataset_cache", action="store_true", help="If given, don't cache the dataset automatically"
)
parser.add_argument(
"--auto_output_dir_path", type=str, default="/weka/oe-adapt-default/allennlp/deletable_checkpoint",
help="If given, automatically replace the `--output_dir` argument with this path, essentially using it as a prefix"
)
parser.add_argument(
"--env",
type=parse_env_var,
action="append",
help="""Additional environment variables in the format 'name=value'.
Can be specified multiple times. Example: --env MY_VAR=value1 --env OTHER_VAR=value2""",
default=[],
)
parser.add_argument(
"--secret",
type=parse_env_var,
action="append",
help="""Additional secret env variables in the format 'name=value'.
Can be specified multiple times. Example: --secret MY_VAR=value1 --secret OTHER_VAR=value2""",
default=[],
)
parser.add_argument(
"--no-host-networking",
action="store_true",
help="If set, don't use host networking in experiment. Note this will make multi-node jobs error.",
)
# Split up the mason args from the Python args.
mason_args, command_args = parser.parse_known_args()
commands = parse_commands(command_args)
return mason_args, commands
def generate_id(length: int = 8) -> str:
"""Generate a random base-36 string of `length` digits."""
# There are ~2.8T base-36 8-digit strings. If we generate 210k ids,
# we'll have a ~1% chance of collision.
alphabet = string.ascii_lowercase + string.digits
return "".join(secrets.choice(alphabet) for _ in range(length))
global_wandb_id = generate_id()
def parse_commands(command_args: List[str]) -> List[List[str]]:
"""the inputs are ['--', 'which', 'python', '--', 'echo', 'hello'], and this function converts it into [['which', 'python'], ['echo', 'hello']]"""
if command_args[0] != "--":
msg = (
"Please separate the Python command you want to run with ' -- ', like "
"`mason [mason-args] -- python [python-args]`."
)
raise Exception(msg)
commands = []
command = []
for item in command_args:
if item == "--":
if command:
commands.append(command)
command = []
else:
command.append(item)
if command:
commands.append(command)
return commands
def get_env_vars(pure_docker_mode: bool, cluster: List[str], beaker_secrets: List[str],
whoami: str, resumable: bool, num_nodes: int, additional_env_vars: List[Dict[str, str]],
additional_secrets: List[Dict[str, str]]):
env_vars = []
# Add user-specified environment variables first
for env_var in additional_env_vars:
env_vars.append(
beaker.EnvVar(
name=env_var["name"],
value=env_var["value"]
)
)
# add user-specific secrets
for secret in additional_secrets:
env_vars.append(
beaker.EnvVar(
name=secret["name"],
secret=secret["value"],
)
)
useful_secrets = [
"HF_TOKEN",
"WANDB_API_KEY",
"BEAKER_TOKEN",
"OPENAI_API_KEY",
]
for useful_secret in useful_secrets:
if f"{whoami}_{useful_secret}" in beaker_secrets:
env_vars.append(
beaker.EnvVar(
name=useful_secret,
secret=f"{whoami}_{useful_secret}",
)
)
elif useful_secret in beaker_secrets:
env_vars.append(
beaker.EnvVar(
name=useful_secret,
secret=useful_secret,
)
)
# use the user's PATH; including the conda / python PATH
if not pure_docker_mode:
env_vars.extend([
beaker.EnvVar(
name="PATH",
value=os.getenv("PATH"),
),
])
# if all cluster is in weka, we mount the weka
if all(c in WEKA_CLUSTERS for c in cluster):
env_vars.extend([
beaker.EnvVar(
name="HF_HOME",
value="/weka/oe-adapt-default/allennlp/.cache/huggingface",
),
beaker.EnvVar(
name="HF_DATASETS_CACHE",
value="/weka/oe-adapt-default/allennlp/.cache/huggingface",
),
beaker.EnvVar(
name="HF_HUB_CACHE",
value="/weka/oe-adapt-default/allennlp/.cache/hub",
),
beaker.EnvVar(
name="CHECKPOINT_OUTPUT_DIR",
value=f"/weka/oe-adapt-default/allennlp/deletable_checkpoint_states/{global_wandb_id}",
),
])
if num_nodes > 1:
env_vars.extend([
beaker.EnvVar(
name="NCCL_SOCKET_IFNAME",
value="ib",
),
beaker.EnvVar(
name="NCCL_IB_HCA",
value="^=mlx5_bond_0",
),
beaker.EnvVar(
name="NCCL_DEBUG",
value="INFO",
),
])
# if all cluster is in gcp we add the following env
elif all(c in GCP_CLUSTERS for c in cluster):
env_vars.extend([
beaker.EnvVar(
name="HF_HOME",
value="/filestore/.cache/huggingface",
),
beaker.EnvVar(
name="HF_DATASETS_CACHE",
value="/filestore/.cache/huggingface",
),
beaker.EnvVar(
name="HF_HUB_CACHE",
value="/filestore/.cache/hub",
),
beaker.EnvVar(
name="HF_HUB_ENABLE_HF_TRANSFER",
value="0", # we disable it because GCP is weird on uploading to the hub
),
])
if num_nodes > 1:
env_vars.extend([
beaker.EnvVar(
name="LD_LIBRARY_PATH",
value=r"/var/lib/tcpxo/lib64:${LD_LIBRARY_PATH}",
),
beaker.EnvVar(
name="NCCL_CROSS_NIC",
value="0",
),
beaker.EnvVar(
name="NCCL_ALGO",
value="Ring,Tree",
),
beaker.EnvVar(
name="NCCL_PROTO",
value="Simple",
),
beaker.EnvVar(
name="NCCL_MIN_NCHANNELS",
value="4",
),
beaker.EnvVar(
name="NCCL_P2P_NET_CHUNKSIZE",
value="524288",
),
beaker.EnvVar(
name="NCCL_P2P_PCI_CHUNKSIZE",
value="524288",
),
beaker.EnvVar(
name="NCCL_P2P_NVL_CHUNKSIZE",
value="1048576",
),
beaker.EnvVar(
name="NCCL_FASTRAK_NUM_FLOWS",
value="2",
),
beaker.EnvVar(
name="NCCL_FASTRAK_ENABLE_CONTROL_CHANNEL",
value="0",
),
beaker.EnvVar(
name="NCCL_BUFFSIZE",
value="8388608",
),
beaker.EnvVar(
name="NCCL_FASTRAK_USE_SNAP",
value="1",
),
beaker.EnvVar(
name="CUDA_VISIBLE_DEVICES",
value="0,1,2,3,4,5,6,7",
),
beaker.EnvVar(
name="NCCL_NET_GDR_LEVEL",
value="PIX",
),
beaker.EnvVar(
name="NCCL_FASTRAK_ENABLE_HOTPATH_LOGGING",
value="0",
),
beaker.EnvVar(
name="NCCL_TUNER_PLUGIN",
value="libnccl-tuner.so",
),
beaker.EnvVar(
name="NCCL_TUNER_CONFIG_PATH",
value="/var/lib/tcpxo/lib64/a3plus_tuner_config.textproto",
),
beaker.EnvVar(
name="NCCL_SHIMNET_GUEST_CONFIG_CHECKER_CONFIG_FILE",
value="/var/lib/tcpxo/lib64/a3plus_guest_config.textproto",
),
beaker.EnvVar(
name="NCCL_FASTRAK_PLUGIN_ACCEPT_TIMEOUT_MS",
value="600000",
),
beaker.EnvVar(
name="NCCL_NVLS_ENABLE",
value="0",
),
beaker.EnvVar(
name="NCCL_DEBUG",
value="WARN",
),
beaker.EnvVar(
name="NCCL_FASTRAK_CTRL_DEV",
value="enp0s12",
),
beaker.EnvVar(
name="NCCL_FASTRAK_IFNAME",
value="enp6s0,enp7s0,enp13s0,enp14s0,enp134s0,enp135s0,enp141s0,enp142s0",
),
beaker.EnvVar(
name="NCCL_SOCKET_IFNAME",
value="enp0s12",
),
beaker.EnvVar(
name="NCCL_USE_SNAP",
value="1",
),
beaker.EnvVar(
name="NCCL_FASTRAK_USE_LLCM",
value="1",
),
beaker.EnvVar(
name="NCCL_FASTRAK_LLCM_DEVICE_DIRECTORY",
value="/dev/aperture_devices",
),
])
# don't mount anything; assume no cache
else:
pass
if resumable:
env_vars.extend([
beaker.EnvVar(
name="WANDB_RUN_ID",
value=global_wandb_id,
),
beaker.EnvVar(
name="WANDB_RESUME",
value="allow",
),
])
return env_vars
def get_datasets(beaker_datasets, cluster: List[str]):
"""if pure docker mode we don't mount the NFS; so we can run it on jupiter2"""
res = []
# if none of the cluster is in weka, we mount the NFS
if all(c in NFS_CLUSTERS for c in cluster):
res = [
beaker.DataMount(
source=beaker.DataSource(host_path="/net/nfs.cirrascale"),
mount_path="/net/nfs.cirrascale",
),
]
# if all cluster is in weka, we mount the weka
elif all(c in WEKA_CLUSTERS for c in cluster):
res = [
beaker.DataMount(
source=beaker.DataSource(weka="oe-adapt-default"),
mount_path="/weka/oe-adapt-default",
),
beaker.DataMount(
source=beaker.DataSource(weka="oe-training-default"),
mount_path="/weka/oe-training-default",
),
]
elif all(c in GCP_CLUSTERS for c in cluster):
res = [
beaker.DataMount(
source=beaker.DataSource(host_path="/mnt/filestore_1"),
mount_path="/filestore",
),
]
for beaker_dataset in beaker_datasets:
to_append = beaker.DataMount(
source=beaker.DataSource(beaker=beaker_dataset["beaker"]),
mount_path=beaker_dataset["mount_path"],
)
res.append(to_append)
return res
def make_internal_command(command: List[str], args: argparse.Namespace, whoami: str, is_external_user: bool) -> str:
# pass through WANDB_ENTITY and WANDB_PROJECT
if "WANDB_ENTITY" in os.environ:
command = [f"WANDB_ENTITY={os.environ['WANDB_ENTITY']}"] + command
if "WANDB_PROJECT" in os.environ:
command = [f"WANDB_PROJECT={os.environ['WANDB_PROJECT']}"] + command
if "WANDB_TAGS" in os.environ:
command = [f"WANDB_TAGS={os.environ['WANDB_TAGS']}"] + command
is_open_instruct_training = any(cmd in command for cmd in OPEN_INSTRUCT_COMMANDS)
if is_open_instruct_training:
from open_instruct.dataset_transformation import get_commit_hash
from open_instruct.utils import download_from_hf, gs_folder_exists, upload_to_gs_bucket
# HACK: Cache dataset logic:
# Here we basically try to run the tokenization full_command locally before running it on beaker
# We could in theory submit a cpu only job to beaker to do this, but that requires setting up
# dependency jobs somehow. Since tokenization is like ~5 minutes, we can just run it locally.
# Once it's cached, we don't need to cache it again.
def find_list_idx(lst: List[str], item: str):
for i in range(len(lst)):
if item == lst[i]:
return i
return -1
# Save the runtime `whoami` calls
command.append("--hf_entity")
command.append("allenai")
command.append("--wandb_entity")
command.append("ai2-llm")
dataset_cache_paths = []
dataset_config_hashes = []
if not args.no_auto_dataset_cache:
for file in OPEN_INSTRUCT_COMMANDS:
# add cache_dataset_only to the command
idx = find_list_idx(command, file)
if idx != -1:
# then try executing the same command with
caching_command = command.copy()
if "--with_tracking" in caching_command:
caching_command.remove("--with_tracking")
caching_command = "python " + " ".join(caching_command[idx:]) + " --cache_dataset_only"
console.log(f"π¦π¦π¦ Running the caching command with `--cache_dataset_only`")
import subprocess
# Use Popen to get real-time output while also capturing it
process = subprocess.Popen(
caching_command,
shell=True,
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,
text=True,
bufsize=1
)
stdout_data, stderr_data = [], []
# Set up select to monitor both stdout and stderr
streams = [process.stdout, process.stderr]
while True:
# Wait for output on either stream
reads = select.select(streams, [], [])[0]
done = True
for stream in reads:
line = stream.readline()
if line:
done = False
is_stdout = stream == process.stdout
print(line.rstrip(), file=sys.stdout if is_stdout else sys.stderr)
if is_stdout:
stdout_data.append(line)
else:
stderr_data.append(line)
if done and process.poll() is not None:
break
result = type('SubprocessResult', (), {
'returncode': process.returncode,
'stdout': ''.join(stdout_data),
'stderr': ''.join(stderr_data)
})
stdout = result.stdout
# Extract the cached dataset path from stdout if it exists
for line in stdout.splitlines():
if "β
Found cached dataset at" in line:
dataset_cache_path = line.split("β
Found cached dataset at")[1].strip()
dataset_config_hash = dataset_cache_path.split("/")[-1]
console.log(f"π¦ Found cached dataset at: {dataset_cache_path}")
console.log(f"π¦ Found cached dataset config hash: {dataset_config_hash}")
dataset_cache_paths.append(dataset_cache_path)
dataset_config_hashes.append(dataset_config_hash)
stderr = result.stderr
return_code = result.returncode
console.log("β
β
β
Finished running the caching command")
# For Weka clusters, we need to override the output_dir parameter to make auto-evaluation work
# If the output_dir is already set to a path in /weka/, we'll keep that path
# Otherwise, we'll set a default path in the user's directory on Weka
if any(c in WEKA_CLUSTERS for c in args.cluster):
if len(args.auto_output_dir_path) > 0:
need_to_override_output_dir = True
for idx, cmd in enumerate(command):
if cmd == "--output_dir":
if "/weka/" in command[idx + 1]:
need_to_override_output_dir = False
break
if need_to_override_output_dir and is_open_instruct_training and not is_external_user:
new_output_dir = f"{args.auto_output_dir_path}/{whoami}/"
console.log(f"πππ Automatically overriding the `--output_dir` argument to be in `{new_output_dir}`")
command.append("--output_dir")
command.append(new_output_dir)
else:
no_eval_commands = [
["--try_launch_beaker_eval_jobs", "False"],
["--try_launch_beaker_eval_jobs_on_weka", "False"],
["--no_try_launch_beaker_eval_jobs"],
["--no_try_launch_beaker_eval_jobs_on_weka"],
]
no_eval_concat_commands = [" ".join(cmd) for cmd in no_eval_commands]
no_eval_concat_command_exists = any(cmd in command for cmd in no_eval_concat_commands)
if not no_eval_concat_command_exists:
raise ValueError("To auto-evaluation is turned on by default, to make sure it works, you must:\n"
"1. run mason with`--auto_output_dir_path /weka/...`, or\n"
"2. in the training command, disable auto-evaluation with `--no_try_launch_beaker_eval_jobs`, or\n"
"3. in the training command, use a `--output_dir` that starts with `/weka/`")
# For GCP clusters, since shared storage is slow, we optimize model loading by:
if any(c in GCP_CLUSTERS for c in args.cluster):
# 1. First downloading the model from HuggingFace to a local path
# 2. Uploading it to a Google Storage bucket (if not already there)
# 3. Then downloading it from the bucket to the compute node
# 4. Finally, replacing the original --model_name_or_path argument with the local path
model_name_or_path = None
for idx, cmd in enumerate(command):
if cmd == "--model_name_or_path":
model_name_or_path = command[idx + 1]
break
model_revision = "main"
for idx, cmd in enumerate(command):
if cmd == "--model_revision":
model_revision = command[idx + 1]
break
commit_hash = get_commit_hash(model_name_or_path, model_revision, "config.json", "model")
download_from_hf(model_name_or_path, model_revision) # first download the model
path = download_from_hf(model_name_or_path, model_revision) # then get the path
gs_saved_path = f"gs://ai2-llm/post-training/deletable_cache_models/{model_name_or_path}/{commit_hash}"
gs_folder = gs_folder_exists(gs_saved_path) # race condition exists, but it's fine since we are launching mason sequentially
if not gs_folder:
upload_to_gs_bucket(path, gs_saved_path)
download_path = gs_saved_path.replace("gs://", "/gs/")
download_path_without_last_folder = download_path.rsplit("/", 1)[0]
gs_download_command = [
"mkdir", "-p", download_path,
"&&",
"gsutil",
"-o", f"GSUtil:parallel_thread_count=1",
"-o", f"GSUtil:sliced_object_download_threshold=150",
"-m",
"cp", "-r", gs_saved_path, download_path_without_last_folder,
"&&", "ls", download_path_without_last_folder,
"&&", "ls", download_path,
"&&",
]
command.append("--gs_bucket_path")
command.append(f"gs://ai2-llm/post-training/")
# Replace the model_name_or_path with the downloaded path
for idx, cmd in enumerate(command):
if cmd == "--model_name_or_path":
command[idx + 1] = download_path
break
for idx, cmd in enumerate(command):
if cmd == "--model_revision":
command[idx + 1] = "main"
break
# Save dataset to GCS
if len(dataset_cache_paths) > 0:
for cidx, (dataset_cache_path, dataset_config_hash) in enumerate(zip(dataset_cache_paths, dataset_config_hashes)):
gs_saved_path = f"gs://ai2-llm/post-training/deletable_cache_datasets/{dataset_cache_path}"
gs_folder = gs_folder_exists(gs_saved_path) # race condition exists, but it's fine since we are launching mason sequentially
if not gs_folder:
upload_to_gs_bucket(dataset_cache_path, gs_saved_path)
dataset_cache_path_without_last_folder = dataset_cache_path.rsplit("/", 1)[0]
gs_download_command += [
"mkdir", "-p", dataset_cache_path_without_last_folder,
"&&",
"gsutil",
"cp", "-r", gs_saved_path, dataset_cache_path_without_last_folder,
"&&", "ls", dataset_cache_path_without_last_folder,
"&&", "ls", dataset_cache_path,
"&&",
]
if cidx == 0:
command.append("--dataset_config_hash")
command.append(dataset_config_hash)
elif cidx == 1:
command.append("--dataset_config_eval_hash")
command.append(dataset_config_hash)
command = gs_download_command + command
# special logic to deal with escape like
# python mason.py ... -- python x.py --dataset_mixer '{"trl-internal-testing/sentiment-trl-style": 1.0}'
# we need to wrap the json string with single quote
for idx in range(len(command)):
if "{" in command[idx]:
command[idx] = "'" + command[idx] + "'"
full_command = command
setup_commands = ""
if not args.pure_docker_mode:
setup_commands = f"cd {os.getcwd()} && "
join_full_command = " ".join(full_command)
# override accelerate call
if args.num_nodes > 1:
join_full_command = re.sub(
r'--num_processes (\d+)',
lambda m: (
f'--num_processes {int(m.group(1)) * args.num_nodes} '
f'--num_machines {args.num_nodes} '
'--machine_rank $BEAKER_REPLICA_RANK '
'--main_process_ip $BEAKER_LEADER_REPLICA_HOSTNAME '
'--main_process_port 29400 '
),
join_full_command
)
full_command = setup_commands + join_full_command
console.log(f"πππ Full command")
print(full_command)
return full_command
def make_task_spec(args, full_command: str, i: int, beaker_secrets: str, whoami: str, resumable: bool):
# Add a check to ensure that the user is using the correct clusters for multi-node jobs
if args.num_nodes > 1 and not all(c in INTERCONNECT_CLUSTERS for c in args.cluster):
confirmation = False
while not confirmation:
confirmation = input(f"Interconnect clusters are required for multi-node jobs. Are you sure you want to continue? (y/n)")
if confirmation == "y":
confirmation = True
elif confirmation == "n":
raise ValueError(f"Interconnect clusters are required for multi-node jobs; please only use the following clusters: {INTERCONNECT_CLUSTERS}")
else:
print("Invalid input. Please enter 'y' or 'n'.")
if args.image == "ai2/cuda11.8-cudnn8-dev-ubuntu20.04" and any(c in GCP_CLUSTERS for c in args.cluster):
raise ValueError("GCP clusters do not have the dev filesystem, please use a proper image")
if args.hostname is not None:
constraints = beaker.Constraints(hostname=args.hostname)
else:
constraints = beaker.Constraints(cluster=args.cluster)
spec = beaker.TaskSpec(
name=f"{args.task_name}__{i}",
image=beaker.ImageSource(beaker=args.image),
command=['/bin/bash', '-c'],
arguments=[full_command],
result=beaker.ResultSpec(path="/output"),
datasets=get_datasets(args.beaker_datasets, args.cluster),
context=beaker.TaskContext(priority=beaker.Priority(args.priority),
preemptible=args.preemptible),
constraints=constraints,
env_vars=get_env_vars(args.pure_docker_mode, args.cluster, beaker_secrets,
whoami, resumable, args.num_nodes, args.env, args.secret),
resources=beaker.TaskResources(gpu_count=args.gpus),
replicas=args.num_nodes,
)
if args.num_nodes > 1:
spec.leader_selection = True
spec.propagate_failure = True
spec.propagate_preemption = True
if args.no_host_networking:
spec.host_networking = False
else:
spec.host_networking = True
return spec
def main():
args, commands = get_args()
# If the user is not in Ai2, we run the command as is
config_path = os.path.expanduser("~/.beaker/config.yml")
is_external_user = not os.path.exists(config_path) and "BEAKER_TOKEN" not in os.environ
if is_external_user:
whoami = "external_user"
beaker_secrets = []
else:
if args.workspace:
beaker_client = beaker.Beaker.from_env(default_workspace=args.workspace)
else:
beaker_client = beaker.Beaker.from_env()
beaker_secrets = [secret.name for secret in beaker_client.workspace.secrets()]
whoami = beaker_client.account.whoami().name
full_commands = [make_internal_command(command, args, whoami, is_external_user) for command in commands]
if is_external_user:
console.rule("[bold red]Non-Ai2 User Detected[/bold red]")
console.print(Text(
(
"π Hi external user! The following command will be executed in our internal server; feel free to modify it to your needs. "
"(For example, you might need to replace `\"$BEAKER_LEADER_REPLICA_HOSTNAME\"` with your own hostname)"
),
style="bold",
))
for idx, full_command in enumerate(full_commands):
console.rule(f"[bold blue]Command {idx+1}[/bold blue]")
console.print(Text(full_command))
if is_external_user:
return
experiment_spec = beaker.ExperimentSpec(
description=args.description,
tasks=[make_task_spec(args, full_command, i, beaker_secrets, whoami, args.resumable) for i, full_command in enumerate(full_commands)],
budget=args.budget,
retry=beaker.RetrySpec(allowed_task_retries=args.max_retries)
)
exp = beaker_client.experiment.create(spec=experiment_spec)
console.log(f"Kicked off Beaker job. https://beaker.org/ex/{exp.id}")
if __name__ == "__main__":
main()