-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsetup.jl
224 lines (163 loc) · 5.39 KB
/
setup.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
using Distributions
using HDF5
using LinearAlgebra
using Random: seed!
include("DarcyFlow/DarcyFlow.jl")
include("plotting.jl")
seed!(16)
FILE_TRUTH = "data/truth.h5"
# ----------------
# Reservoir properties
# ----------------
μ = 0.5 * 1e-3 / (3600.0 * 24.0) # Viscosity (Pa⋅day)
ϕ = 0.30 # Porosity
c = 2.0e-4 / 6895.0 # Compressibility (Pa^-1)
p0 = 20 * 1.0e6 # Initial pressure (Pa)
# ----------------
# Grid
# ----------------
xmax = 1000.0
tmax = 160.0
Δx_c = 12.5
Δx_f = 7.5
Δt_c = 4.0
Δt_f = 2.0
n_wells = 9
well_centres = [
(150, 150), (150, 500), (150, 850),
(500, 150), (500, 500), (500, 850),
(850, 150), (850, 500), (850, 850)
]
x_obs = [c[1] for c ∈ well_centres]
y_obs = [c[2] for c ∈ well_centres]
t_obs = [8, 16, 24, 32, 40, 48, 56, 64, 72, 80]
grid_c = Grid(xmax, tmax, Δx_c, Δt_c)
grid_f = Grid(xmax, tmax, Δx_f, Δt_f)
# ----------------
# Well parameters
# ----------------
q_c = 50.0 / Δx_c^2 # Extraction rate, (m^3 / day) / m^3
q_f = 50.0 / Δx_f^2 # Extraction rate, (m^3 / day) / m^3
well_radius = 50.0
well_change_times = [0, 40, 80, 120]
well_rates_c = [
(-q_c, 0, 0, -0.5q_c), (0, -q_c, 0, -0.5q_c), (-q_c, 0, 0, -0.5q_c),
(0, -q_c, 0, -0.5q_c), (-q_c, 0, 0, -0.5q_c), (0, -q_c, 0, -0.5q_c),
(-q_c, 0, 0, -0.5q_c), (0, -q_c, 0, -0.5q_c), (-q_c, 0, 0, -0.5q_c)
]
well_rates_f = [
(-q_f, 0, 0, -0.5q_f), (0, -q_f, 0, -0.5q_f), (-q_f, 0, 0, -0.5q_f),
(0, -q_f, 0, -0.5q_f), (-q_f, 0, 0, -0.5q_f), (0, -q_f, 0, -0.5q_f),
(-q_f, 0, 0, -0.5q_f), (0, -q_f, 0, -0.5q_f), (-q_f, 0, 0, -0.5q_f)
]
wells_c = [
Well(grid_c, centre..., well_radius, rates)
for (centre, rates) ∈ zip(well_centres, well_rates_c)
]
wells_f = [
Well(grid_f, centre..., well_radius, rates)
for (centre, rates) ∈ zip(well_centres, well_rates_f)
]
model_f = Model(grid_f, ϕ, μ, c, p0, wells_f, well_change_times, x_obs, y_obs, t_obs)
model_c = Model(grid_c, ϕ, μ, c, p0, wells_c, well_change_times, x_obs, y_obs, t_obs)
function generate_truth(
g::Grid,
m::Model,
μ::Real,
σ_bounds::Tuple,
l_bounds::Tuple
)
true_field = MaternField(g, μ, σ_bounds, l_bounds)
θ_t = vec(rand(true_field))
u_t = transform(true_field, θ_t)
F_t = solve(g, m, u_t)
G_t = m.B * F_t
h5write(FILE_TRUTH, "θ_t", θ_t)
h5write(FILE_TRUTH, "u_t", u_t)
h5write(FILE_TRUTH, "F_t", F_t)
h5write(FILE_TRUTH, "G_t", G_t)
return θ_t, u_t, F_t, G_t
end
function generate_obs(
G_t::AbstractVector,
C_ϵ::AbstractMatrix
)
d_obs = G_t + rand(MvNormal(C_ϵ))
h5write(FILE_TRUTH, "d_obs", d_obs)
return d_obs
end
function read_truth()
f = h5open(FILE_TRUTH)
θ_t = f["θ_t"][:]
u_t = f["u_t"][:]
F_t = f["F_t"][:]
G_t = f["G_t"][:]
close(f)
return θ_t, u_t, F_t, G_t
end
function read_obs()
f = h5open(FILE_TRUTH)
d_obs = f["d_obs"][:]
close(f)
return d_obs
end
# ----------------
# Prior and error distribution
# ----------------
lnk_μ = -31
σ_bounds = (0.5, 1.25)
l_bounds = (200, 1000)
pr = MaternField(grid_c, lnk_μ, σ_bounds, l_bounds)
σ_ϵ = p0 * 0.01
C_ϵ = diagm(fill(σ_ϵ^2, model_f.ny))
C_ϵ_inv = spdiagm(fill(σ_ϵ^-2, model_f.ny))
# ----------------
# Truth and observations
# ----------------
# θ_t, u_t, F_t, G_t = generate_truth(grid_f, model_f, lnk_μ, σ_bounds, l_bounds)
θ_t, u_t, F_t, G_t = read_truth()
# d_obs = generate_obs(G_t, C_ϵ)
d_obs = read_obs()
# ----------------
# POD
# ----------------
# Generate POD basis
# μ_pi, V_ri, μ_ε, C_ε = generate_pod_data(grid_c, model_c, pr, 100, 0.999, "pod/grid_$(grid_c.nx)")
μ_pi, V_ri, μ_ε, C_ε = read_pod_data("pod/grid_$(grid_c.nx)")
μ_e = μ_ε .+ 0.0
C_e = Hermitian(C_ϵ + C_ε)
C_e_inv = Hermitian(inv(C_e))
L_e = cholesky(C_e_inv).U
model_r = ReducedOrderModel(
grid_c, ϕ, μ, c, p0, wells_c, well_change_times,
x_obs, y_obs, t_obs, μ_pi, V_ri, μ_e, C_e
)
# ----------------
# Model functions
# ----------------
F(u::AbstractVector) = solve(grid_c, model_r, u)
G(p::AbstractVector) = model_c.B * p
# if TEST_POD
# θs_test = rand(pr, 20)
# us_test = [@time F(θ) for θ ∈ eachcol(θs_test)]
# us_test_r = [@time F_r(θ) for θ ∈ eachcol(θs_test)]
# ys_test = hcat([G(u) for u ∈ us_test]...)
# ys_test_r = hcat([G(u) for u ∈ us_test_r]...)
# animate(us_test[1], grid_c, (41, 13), "plots/animations/darcy_flow_ex")
# animate(us_test_r[1], grid_c, (41, 13), "plots/animations/darcy_flow_ex_reduced")
# end
# animate(u_t, grid_f, (50, 50), "plots/animations/test")
# # # Stuff to export for plotting (TODO: clean up...)
# well_ps = hcat(fill(p0, 9), reshape(model_f.B_wells * F_t, 9, :))
# well_ts = [0.0, grid_f.ts...]
# well_ps_obs = reshape(d_obs, 9, :)
# well_ts_obs = t_obs
# u_t = reshape(u_t, grid_f.nx, grid_f.nx)
# fname = "data/setup_alt.h5"
# h5write(fname, "well_ps", well_ps)
# h5write(fname, "well_ts", well_ts)
# h5write(fname, "well_ps_obs", well_ps_obs)
# h5write(fname, "well_ts_obs", well_ts_obs)
# h5write(fname, "u_t", u_t)
# h5write(fname, "xs", collect(grid_f.xs))
# h5write(fname, "well_centres", well_centres)