1
- # import von numpy fuer arrays und wesentliches mathematische Funktionen
1
+ # import of numpy for arrays and basic mathematical functions
2
2
import numpy as np
3
- # import von plotly fuer die Graphen
3
+ # import of plotly for the graphs
4
4
import plotly .graph_objects as go
5
5
from plotly .subplots import make_subplots
6
6
@@ -42,7 +42,7 @@ def add_gradients(self, gradf):
42
42
arrowwidth = 2 ,
43
43
arrowcolor = 'red' )
44
44
45
- def add_gradient_descent (self , x0 , function , grad , gamma = 1 , iterations = 10 , color = None , Nebenbedingung = None ):
45
+ def add_gradient_descent (self , x0 , function , grad , gamma = 1 , iterations = 10 , color = None , constraint = None ):
46
46
x = np .zeros (shape = (iterations + 1 , 2 ))
47
47
f_x = np .zeros (iterations + 1 )
48
48
x [0 , :] = np .array (x0 )
@@ -57,15 +57,15 @@ def add_gradient_descent(self, x0, function, grad, gamma=1, iterations=10, color
57
57
showlegend = False ,
58
58
line_color = color )
59
59
self .result = x [- 1 ]
60
- if Nebenbedingung is None :
60
+ if constraint is None :
61
61
self .update_layout (title = "x0=" + str (np .round (x0 , 3 )) + ", gamma =" +
62
62
str (np .round (gamma , 3 )) + ",<br> iterations=" + str (iterations ) +
63
63
", f(x)=" + str (np .round (f_x [- 1 ], 3 )) + ", x=" + str (np .round (self .result , 3 )))
64
64
else :
65
65
self .update_layout (title = "x0=" + str (np .round (x0 , 3 )) + ", gamma =" +
66
66
str (np .round (gamma , 3 )) + ",<br> iterations=" + str (iterations ) +
67
67
", f(x)=" + str (np .round (f_x [- 1 ], 3 )) + ", h(x) = "
68
- + str (np .round (Nebenbedingung (self .result ), 3 ))
68
+ + str (np .round (constraint (self .result ), 3 ))
69
69
+ ",<br> x=" + str (np .round (self .result , 3 )))
70
70
self .for_each_trace (
71
71
lambda t : t .update (hovertemplate = "x1 %{x}<br>x2 %{y}<extra></extra>" ))
@@ -107,7 +107,7 @@ def contour_zoom(self, xmin, xmax, ymin, ymax, function):
107
107
self .update_layout (xaxis_range = [xmin , xmax ])
108
108
self .update_layout (yaxis_range = [ymin , ymax ])
109
109
110
- def add_gradient_descent_surface (self , x0 , function , grad , gamma = 1 , iterations = 10 , color = None , Nebenbedingung = None ):
110
+ def add_gradient_descent_surface (self , x0 , function , grad , gamma = 1 , iterations = 10 , color = None , constraint = None ):
111
111
x = np .zeros (shape = (iterations + 1 , 2 ))
112
112
f_x = np .zeros (iterations + 1 )
113
113
x [0 , :] = np .array (x0 )
0 commit comments