forked from aosp-mirror/platform_external_wpa_supplicant
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathlibtommath.c
2370 lines (1954 loc) · 52.3 KB
/
libtommath.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
* Minimal code for RSA support from LibTomMath 0.3.9
* http://math.libtomcrypt.com/
* http://math.libtomcrypt.com/files/ltm-0.39.tar.bz2
* This library was released in public domain by Tom St Denis.
*
* The combination in this file is not using many of the optimized algorithms
* (e.g., Montgomery reduction) and is considerable slower than the LibTomMath
* with its default of SC_RSA_1 settins. The main purpose of having this
* version here is to make it easier to build bignum.c wrapper without having
* to install and build an external library. However, it is likely worth the
* effort to use the full library with SC_RSA_1 instead of this minimized copy.
* Including the optimized algorithms may increase the size requirements by
* 15 kB or so (measured with x86 build).
*
* If CONFIG_INTERNAL_LIBTOMMATH is defined, bignum.c includes this
* libtommath.c file instead of using the external LibTomMath library.
*/
#ifndef CHAR_BIT
#define CHAR_BIT 8
#endif
#define BN_MP_INVMOD_C
#define BN_S_MP_EXPTMOD_C /* Note: #undef in tommath_superclass.h; this would
* require BN_MP_EXPTMOD_FAST_C instead */
#define BN_S_MP_MUL_DIGS_C
#define BN_MP_INVMOD_SLOW_C
#define BN_S_MP_SQR_C
#define BN_S_MP_MUL_HIGH_DIGS_C /* Note: #undef in tommath_superclass.h; this
* would require other than mp_reduce */
/* from tommath.h */
#ifndef MIN
#define MIN(x,y) ((x)<(y)?(x):(y))
#endif
#ifndef MAX
#define MAX(x,y) ((x)>(y)?(x):(y))
#endif
#define OPT_CAST(x)
typedef unsigned long mp_digit;
typedef u64 mp_word;
#define DIGIT_BIT 28
#define MP_28BIT
#define XMALLOC os_malloc
#define XFREE os_free
#define XREALLOC os_realloc
#define MP_MASK ((((mp_digit)1)<<((mp_digit)DIGIT_BIT))-((mp_digit)1))
#define MP_LT -1 /* less than */
#define MP_EQ 0 /* equal to */
#define MP_GT 1 /* greater than */
#define MP_ZPOS 0 /* positive integer */
#define MP_NEG 1 /* negative */
#define MP_OKAY 0 /* ok result */
#define MP_MEM -2 /* out of mem */
#define MP_VAL -3 /* invalid input */
#define MP_YES 1 /* yes response */
#define MP_NO 0 /* no response */
typedef int mp_err;
/* define this to use lower memory usage routines (exptmods mostly) */
#define MP_LOW_MEM
/* default precision */
#ifndef MP_PREC
#ifndef MP_LOW_MEM
#define MP_PREC 32 /* default digits of precision */
#else
#define MP_PREC 8 /* default digits of precision */
#endif
#endif
/* size of comba arrays, should be at least 2 * 2**(BITS_PER_WORD - BITS_PER_DIGIT*2) */
#define MP_WARRAY (1 << (sizeof(mp_word) * CHAR_BIT - 2 * DIGIT_BIT + 1))
/* the infamous mp_int structure */
typedef struct {
int used, alloc, sign;
mp_digit *dp;
} mp_int;
/* ---> Basic Manipulations <--- */
#define mp_iszero(a) (((a)->used == 0) ? MP_YES : MP_NO)
#define mp_iseven(a) (((a)->used > 0 && (((a)->dp[0] & 1) == 0)) ? MP_YES : MP_NO)
#define mp_isodd(a) (((a)->used > 0 && (((a)->dp[0] & 1) == 1)) ? MP_YES : MP_NO)
/* prototypes for copied functions */
#define s_mp_mul(a, b, c) s_mp_mul_digs(a, b, c, (a)->used + (b)->used + 1)
static int s_mp_exptmod(mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode);
static int s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs);
static int s_mp_sqr(mp_int * a, mp_int * b);
static int s_mp_mul_high_digs(mp_int * a, mp_int * b, mp_int * c, int digs);
static int fast_s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs);
static int mp_init_multi(mp_int *mp, ...);
static void mp_clear_multi(mp_int *mp, ...);
static int mp_lshd(mp_int * a, int b);
static void mp_set(mp_int * a, mp_digit b);
static void mp_clamp(mp_int * a);
static void mp_exch(mp_int * a, mp_int * b);
static void mp_rshd(mp_int * a, int b);
static void mp_zero(mp_int * a);
static int mp_mod_2d(mp_int * a, int b, mp_int * c);
static int mp_div_2d(mp_int * a, int b, mp_int * c, mp_int * d);
static int mp_init_copy(mp_int * a, mp_int * b);
static int mp_mul_2d(mp_int * a, int b, mp_int * c);
static int mp_div_2(mp_int * a, mp_int * b);
static int mp_copy(mp_int * a, mp_int * b);
static int mp_count_bits(mp_int * a);
static int mp_div(mp_int * a, mp_int * b, mp_int * c, mp_int * d);
static int mp_mod(mp_int * a, mp_int * b, mp_int * c);
static int mp_grow(mp_int * a, int size);
static int mp_cmp_mag(mp_int * a, mp_int * b);
static int mp_invmod(mp_int * a, mp_int * b, mp_int * c);
static int mp_abs(mp_int * a, mp_int * b);
static int mp_invmod_slow(mp_int * a, mp_int * b, mp_int * c);
static int mp_sqr(mp_int * a, mp_int * b);
static int mp_reduce_2k_l(mp_int *a, mp_int *n, mp_int *d);
static int mp_reduce_2k_setup_l(mp_int *a, mp_int *d);
static int mp_2expt(mp_int * a, int b);
static int mp_reduce_setup(mp_int * a, mp_int * b);
static int mp_reduce(mp_int * x, mp_int * m, mp_int * mu);
static int mp_init_size(mp_int * a, int size);
/* functions from bn_<func name>.c */
/* reverse an array, used for radix code */
static void bn_reverse (unsigned char *s, int len)
{
int ix, iy;
unsigned char t;
ix = 0;
iy = len - 1;
while (ix < iy) {
t = s[ix];
s[ix] = s[iy];
s[iy] = t;
++ix;
--iy;
}
}
/* low level addition, based on HAC pp.594, Algorithm 14.7 */
static int s_mp_add (mp_int * a, mp_int * b, mp_int * c)
{
mp_int *x;
int olduse, res, min, max;
/* find sizes, we let |a| <= |b| which means we have to sort
* them. "x" will point to the input with the most digits
*/
if (a->used > b->used) {
min = b->used;
max = a->used;
x = a;
} else {
min = a->used;
max = b->used;
x = b;
}
/* init result */
if (c->alloc < max + 1) {
if ((res = mp_grow (c, max + 1)) != MP_OKAY) {
return res;
}
}
/* get old used digit count and set new one */
olduse = c->used;
c->used = max + 1;
{
register mp_digit u, *tmpa, *tmpb, *tmpc;
register int i;
/* alias for digit pointers */
/* first input */
tmpa = a->dp;
/* second input */
tmpb = b->dp;
/* destination */
tmpc = c->dp;
/* zero the carry */
u = 0;
for (i = 0; i < min; i++) {
/* Compute the sum at one digit, T[i] = A[i] + B[i] + U */
*tmpc = *tmpa++ + *tmpb++ + u;
/* U = carry bit of T[i] */
u = *tmpc >> ((mp_digit)DIGIT_BIT);
/* take away carry bit from T[i] */
*tmpc++ &= MP_MASK;
}
/* now copy higher words if any, that is in A+B
* if A or B has more digits add those in
*/
if (min != max) {
for (; i < max; i++) {
/* T[i] = X[i] + U */
*tmpc = x->dp[i] + u;
/* U = carry bit of T[i] */
u = *tmpc >> ((mp_digit)DIGIT_BIT);
/* take away carry bit from T[i] */
*tmpc++ &= MP_MASK;
}
}
/* add carry */
*tmpc++ = u;
/* clear digits above oldused */
for (i = c->used; i < olduse; i++) {
*tmpc++ = 0;
}
}
mp_clamp (c);
return MP_OKAY;
}
/* low level subtraction (assumes |a| > |b|), HAC pp.595 Algorithm 14.9 */
static int s_mp_sub (mp_int * a, mp_int * b, mp_int * c)
{
int olduse, res, min, max;
/* find sizes */
min = b->used;
max = a->used;
/* init result */
if (c->alloc < max) {
if ((res = mp_grow (c, max)) != MP_OKAY) {
return res;
}
}
olduse = c->used;
c->used = max;
{
register mp_digit u, *tmpa, *tmpb, *tmpc;
register int i;
/* alias for digit pointers */
tmpa = a->dp;
tmpb = b->dp;
tmpc = c->dp;
/* set carry to zero */
u = 0;
for (i = 0; i < min; i++) {
/* T[i] = A[i] - B[i] - U */
*tmpc = *tmpa++ - *tmpb++ - u;
/* U = carry bit of T[i]
* Note this saves performing an AND operation since
* if a carry does occur it will propagate all the way to the
* MSB. As a result a single shift is enough to get the carry
*/
u = *tmpc >> ((mp_digit)(CHAR_BIT * sizeof (mp_digit) - 1));
/* Clear carry from T[i] */
*tmpc++ &= MP_MASK;
}
/* now copy higher words if any, e.g. if A has more digits than B */
for (; i < max; i++) {
/* T[i] = A[i] - U */
*tmpc = *tmpa++ - u;
/* U = carry bit of T[i] */
u = *tmpc >> ((mp_digit)(CHAR_BIT * sizeof (mp_digit) - 1));
/* Clear carry from T[i] */
*tmpc++ &= MP_MASK;
}
/* clear digits above used (since we may not have grown result above) */
for (i = c->used; i < olduse; i++) {
*tmpc++ = 0;
}
}
mp_clamp (c);
return MP_OKAY;
}
/* init a new mp_int */
static int mp_init (mp_int * a)
{
int i;
/* allocate memory required and clear it */
a->dp = OPT_CAST(mp_digit) XMALLOC (sizeof (mp_digit) * MP_PREC);
if (a->dp == NULL) {
return MP_MEM;
}
/* set the digits to zero */
for (i = 0; i < MP_PREC; i++) {
a->dp[i] = 0;
}
/* set the used to zero, allocated digits to the default precision
* and sign to positive */
a->used = 0;
a->alloc = MP_PREC;
a->sign = MP_ZPOS;
return MP_OKAY;
}
/* clear one (frees) */
static void mp_clear (mp_int * a)
{
int i;
/* only do anything if a hasn't been freed previously */
if (a->dp != NULL) {
/* first zero the digits */
for (i = 0; i < a->used; i++) {
a->dp[i] = 0;
}
/* free ram */
XFREE(a->dp);
/* reset members to make debugging easier */
a->dp = NULL;
a->alloc = a->used = 0;
a->sign = MP_ZPOS;
}
}
/* high level addition (handles signs) */
static int mp_add (mp_int * a, mp_int * b, mp_int * c)
{
int sa, sb, res;
/* get sign of both inputs */
sa = a->sign;
sb = b->sign;
/* handle two cases, not four */
if (sa == sb) {
/* both positive or both negative */
/* add their magnitudes, copy the sign */
c->sign = sa;
res = s_mp_add (a, b, c);
} else {
/* one positive, the other negative */
/* subtract the one with the greater magnitude from */
/* the one of the lesser magnitude. The result gets */
/* the sign of the one with the greater magnitude. */
if (mp_cmp_mag (a, b) == MP_LT) {
c->sign = sb;
res = s_mp_sub (b, a, c);
} else {
c->sign = sa;
res = s_mp_sub (a, b, c);
}
}
return res;
}
/* high level subtraction (handles signs) */
static int mp_sub (mp_int * a, mp_int * b, mp_int * c)
{
int sa, sb, res;
sa = a->sign;
sb = b->sign;
if (sa != sb) {
/* subtract a negative from a positive, OR */
/* subtract a positive from a negative. */
/* In either case, ADD their magnitudes, */
/* and use the sign of the first number. */
c->sign = sa;
res = s_mp_add (a, b, c);
} else {
/* subtract a positive from a positive, OR */
/* subtract a negative from a negative. */
/* First, take the difference between their */
/* magnitudes, then... */
if (mp_cmp_mag (a, b) != MP_LT) {
/* Copy the sign from the first */
c->sign = sa;
/* The first has a larger or equal magnitude */
res = s_mp_sub (a, b, c);
} else {
/* The result has the *opposite* sign from */
/* the first number. */
c->sign = (sa == MP_ZPOS) ? MP_NEG : MP_ZPOS;
/* The second has a larger magnitude */
res = s_mp_sub (b, a, c);
}
}
return res;
}
/* high level multiplication (handles sign) */
static int mp_mul (mp_int * a, mp_int * b, mp_int * c)
{
int res, neg;
neg = (a->sign == b->sign) ? MP_ZPOS : MP_NEG;
/* use Toom-Cook? */
#ifdef BN_MP_TOOM_MUL_C
if (MIN (a->used, b->used) >= TOOM_MUL_CUTOFF) {
res = mp_toom_mul(a, b, c);
} else
#endif
#ifdef BN_MP_KARATSUBA_MUL_C
/* use Karatsuba? */
if (MIN (a->used, b->used) >= KARATSUBA_MUL_CUTOFF) {
res = mp_karatsuba_mul (a, b, c);
} else
#endif
{
/* can we use the fast multiplier?
*
* The fast multiplier can be used if the output will
* have less than MP_WARRAY digits and the number of
* digits won't affect carry propagation
*/
#ifdef BN_FAST_S_MP_MUL_DIGS_C
int digs = a->used + b->used + 1;
if ((digs < MP_WARRAY) &&
MIN(a->used, b->used) <=
(1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
res = fast_s_mp_mul_digs (a, b, c, digs);
} else
#endif
#ifdef BN_S_MP_MUL_DIGS_C
res = s_mp_mul (a, b, c); /* uses s_mp_mul_digs */
#else
#error mp_mul could fail
res = MP_VAL;
#endif
}
c->sign = (c->used > 0) ? neg : MP_ZPOS;
return res;
}
/* d = a * b (mod c) */
static int mp_mulmod (mp_int * a, mp_int * b, mp_int * c, mp_int * d)
{
int res;
mp_int t;
if ((res = mp_init (&t)) != MP_OKAY) {
return res;
}
if ((res = mp_mul (a, b, &t)) != MP_OKAY) {
mp_clear (&t);
return res;
}
res = mp_mod (&t, c, d);
mp_clear (&t);
return res;
}
/* c = a mod b, 0 <= c < b */
static int mp_mod (mp_int * a, mp_int * b, mp_int * c)
{
mp_int t;
int res;
if ((res = mp_init (&t)) != MP_OKAY) {
return res;
}
if ((res = mp_div (a, b, NULL, &t)) != MP_OKAY) {
mp_clear (&t);
return res;
}
if (t.sign != b->sign) {
res = mp_add (b, &t, c);
} else {
res = MP_OKAY;
mp_exch (&t, c);
}
mp_clear (&t);
return res;
}
/* this is a shell function that calls either the normal or Montgomery
* exptmod functions. Originally the call to the montgomery code was
* embedded in the normal function but that wasted alot of stack space
* for nothing (since 99% of the time the Montgomery code would be called)
*/
static int mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)
{
int dr;
/* modulus P must be positive */
if (P->sign == MP_NEG) {
return MP_VAL;
}
/* if exponent X is negative we have to recurse */
if (X->sign == MP_NEG) {
#ifdef BN_MP_INVMOD_C
mp_int tmpG, tmpX;
int err;
/* first compute 1/G mod P */
if ((err = mp_init(&tmpG)) != MP_OKAY) {
return err;
}
if ((err = mp_invmod(G, P, &tmpG)) != MP_OKAY) {
mp_clear(&tmpG);
return err;
}
/* now get |X| */
if ((err = mp_init(&tmpX)) != MP_OKAY) {
mp_clear(&tmpG);
return err;
}
if ((err = mp_abs(X, &tmpX)) != MP_OKAY) {
mp_clear_multi(&tmpG, &tmpX, NULL);
return err;
}
/* and now compute (1/G)**|X| instead of G**X [X < 0] */
err = mp_exptmod(&tmpG, &tmpX, P, Y);
mp_clear_multi(&tmpG, &tmpX, NULL);
return err;
#else
#error mp_exptmod would always fail
/* no invmod */
return MP_VAL;
#endif
}
/* modified diminished radix reduction */
#if defined(BN_MP_REDUCE_IS_2K_L_C) && defined(BN_MP_REDUCE_2K_L_C) && defined(BN_S_MP_EXPTMOD_C)
if (mp_reduce_is_2k_l(P) == MP_YES) {
return s_mp_exptmod(G, X, P, Y, 1);
}
#endif
#ifdef BN_MP_DR_IS_MODULUS_C
/* is it a DR modulus? */
dr = mp_dr_is_modulus(P);
#else
/* default to no */
dr = 0;
#endif
#ifdef BN_MP_REDUCE_IS_2K_C
/* if not, is it a unrestricted DR modulus? */
if (dr == 0) {
dr = mp_reduce_is_2k(P) << 1;
}
#endif
/* if the modulus is odd or dr != 0 use the montgomery method */
#ifdef BN_MP_EXPTMOD_FAST_C
if (mp_isodd (P) == 1 || dr != 0) {
return mp_exptmod_fast (G, X, P, Y, dr);
} else {
#endif
#ifdef BN_S_MP_EXPTMOD_C
/* otherwise use the generic Barrett reduction technique */
return s_mp_exptmod (G, X, P, Y, 0);
#else
#error mp_exptmod could fail
/* no exptmod for evens */
return MP_VAL;
#endif
#ifdef BN_MP_EXPTMOD_FAST_C
}
#endif
}
/* compare two ints (signed)*/
static int mp_cmp (mp_int * a, mp_int * b)
{
/* compare based on sign */
if (a->sign != b->sign) {
if (a->sign == MP_NEG) {
return MP_LT;
} else {
return MP_GT;
}
}
/* compare digits */
if (a->sign == MP_NEG) {
/* if negative compare opposite direction */
return mp_cmp_mag(b, a);
} else {
return mp_cmp_mag(a, b);
}
}
/* compare a digit */
static int mp_cmp_d(mp_int * a, mp_digit b)
{
/* compare based on sign */
if (a->sign == MP_NEG) {
return MP_LT;
}
/* compare based on magnitude */
if (a->used > 1) {
return MP_GT;
}
/* compare the only digit of a to b */
if (a->dp[0] > b) {
return MP_GT;
} else if (a->dp[0] < b) {
return MP_LT;
} else {
return MP_EQ;
}
}
/* hac 14.61, pp608 */
static int mp_invmod (mp_int * a, mp_int * b, mp_int * c)
{
/* b cannot be negative */
if (b->sign == MP_NEG || mp_iszero(b) == 1) {
return MP_VAL;
}
#ifdef BN_FAST_MP_INVMOD_C
/* if the modulus is odd we can use a faster routine instead */
if (mp_isodd (b) == 1) {
return fast_mp_invmod (a, b, c);
}
#endif
#ifdef BN_MP_INVMOD_SLOW_C
return mp_invmod_slow(a, b, c);
#endif
#ifndef BN_FAST_MP_INVMOD_C
#ifndef BN_MP_INVMOD_SLOW_C
#error mp_invmod would always fail
#endif
#endif
return MP_VAL;
}
/* get the size for an unsigned equivalent */
static int mp_unsigned_bin_size (mp_int * a)
{
int size = mp_count_bits (a);
return (size / 8 + ((size & 7) != 0 ? 1 : 0));
}
/* hac 14.61, pp608 */
static int mp_invmod_slow (mp_int * a, mp_int * b, mp_int * c)
{
mp_int x, y, u, v, A, B, C, D;
int res;
/* b cannot be negative */
if (b->sign == MP_NEG || mp_iszero(b) == 1) {
return MP_VAL;
}
/* init temps */
if ((res = mp_init_multi(&x, &y, &u, &v,
&A, &B, &C, &D, NULL)) != MP_OKAY) {
return res;
}
/* x = a, y = b */
if ((res = mp_mod(a, b, &x)) != MP_OKAY) {
goto LBL_ERR;
}
if ((res = mp_copy (b, &y)) != MP_OKAY) {
goto LBL_ERR;
}
/* 2. [modified] if x,y are both even then return an error! */
if (mp_iseven (&x) == 1 && mp_iseven (&y) == 1) {
res = MP_VAL;
goto LBL_ERR;
}
/* 3. u=x, v=y, A=1, B=0, C=0,D=1 */
if ((res = mp_copy (&x, &u)) != MP_OKAY) {
goto LBL_ERR;
}
if ((res = mp_copy (&y, &v)) != MP_OKAY) {
goto LBL_ERR;
}
mp_set (&A, 1);
mp_set (&D, 1);
top:
/* 4. while u is even do */
while (mp_iseven (&u) == 1) {
/* 4.1 u = u/2 */
if ((res = mp_div_2 (&u, &u)) != MP_OKAY) {
goto LBL_ERR;
}
/* 4.2 if A or B is odd then */
if (mp_isodd (&A) == 1 || mp_isodd (&B) == 1) {
/* A = (A+y)/2, B = (B-x)/2 */
if ((res = mp_add (&A, &y, &A)) != MP_OKAY) {
goto LBL_ERR;
}
if ((res = mp_sub (&B, &x, &B)) != MP_OKAY) {
goto LBL_ERR;
}
}
/* A = A/2, B = B/2 */
if ((res = mp_div_2 (&A, &A)) != MP_OKAY) {
goto LBL_ERR;
}
if ((res = mp_div_2 (&B, &B)) != MP_OKAY) {
goto LBL_ERR;
}
}
/* 5. while v is even do */
while (mp_iseven (&v) == 1) {
/* 5.1 v = v/2 */
if ((res = mp_div_2 (&v, &v)) != MP_OKAY) {
goto LBL_ERR;
}
/* 5.2 if C or D is odd then */
if (mp_isodd (&C) == 1 || mp_isodd (&D) == 1) {
/* C = (C+y)/2, D = (D-x)/2 */
if ((res = mp_add (&C, &y, &C)) != MP_OKAY) {
goto LBL_ERR;
}
if ((res = mp_sub (&D, &x, &D)) != MP_OKAY) {
goto LBL_ERR;
}
}
/* C = C/2, D = D/2 */
if ((res = mp_div_2 (&C, &C)) != MP_OKAY) {
goto LBL_ERR;
}
if ((res = mp_div_2 (&D, &D)) != MP_OKAY) {
goto LBL_ERR;
}
}
/* 6. if u >= v then */
if (mp_cmp (&u, &v) != MP_LT) {
/* u = u - v, A = A - C, B = B - D */
if ((res = mp_sub (&u, &v, &u)) != MP_OKAY) {
goto LBL_ERR;
}
if ((res = mp_sub (&A, &C, &A)) != MP_OKAY) {
goto LBL_ERR;
}
if ((res = mp_sub (&B, &D, &B)) != MP_OKAY) {
goto LBL_ERR;
}
} else {
/* v - v - u, C = C - A, D = D - B */
if ((res = mp_sub (&v, &u, &v)) != MP_OKAY) {
goto LBL_ERR;
}
if ((res = mp_sub (&C, &A, &C)) != MP_OKAY) {
goto LBL_ERR;
}
if ((res = mp_sub (&D, &B, &D)) != MP_OKAY) {
goto LBL_ERR;
}
}
/* if not zero goto step 4 */
if (mp_iszero (&u) == 0)
goto top;
/* now a = C, b = D, gcd == g*v */
/* if v != 1 then there is no inverse */
if (mp_cmp_d (&v, 1) != MP_EQ) {
res = MP_VAL;
goto LBL_ERR;
}
/* if its too low */
while (mp_cmp_d(&C, 0) == MP_LT) {
if ((res = mp_add(&C, b, &C)) != MP_OKAY) {
goto LBL_ERR;
}
}
/* too big */
while (mp_cmp_mag(&C, b) != MP_LT) {
if ((res = mp_sub(&C, b, &C)) != MP_OKAY) {
goto LBL_ERR;
}
}
/* C is now the inverse */
mp_exch (&C, c);
res = MP_OKAY;
LBL_ERR:mp_clear_multi (&x, &y, &u, &v, &A, &B, &C, &D, NULL);
return res;
}
/* compare maginitude of two ints (unsigned) */
static int mp_cmp_mag (mp_int * a, mp_int * b)
{
int n;
mp_digit *tmpa, *tmpb;
/* compare based on # of non-zero digits */
if (a->used > b->used) {
return MP_GT;
}
if (a->used < b->used) {
return MP_LT;
}
/* alias for a */
tmpa = a->dp + (a->used - 1);
/* alias for b */
tmpb = b->dp + (a->used - 1);
/* compare based on digits */
for (n = 0; n < a->used; ++n, --tmpa, --tmpb) {
if (*tmpa > *tmpb) {
return MP_GT;
}
if (*tmpa < *tmpb) {
return MP_LT;
}
}
return MP_EQ;
}
/* reads a unsigned char array, assumes the msb is stored first [big endian] */
static int mp_read_unsigned_bin (mp_int * a, const unsigned char *b, int c)
{
int res;
/* make sure there are at least two digits */
if (a->alloc < 2) {
if ((res = mp_grow(a, 2)) != MP_OKAY) {
return res;
}
}
/* zero the int */
mp_zero (a);
/* read the bytes in */
while (c-- > 0) {
if ((res = mp_mul_2d (a, 8, a)) != MP_OKAY) {
return res;
}
#ifndef MP_8BIT
a->dp[0] |= *b++;
a->used += 1;
#else
a->dp[0] = (*b & MP_MASK);
a->dp[1] |= ((*b++ >> 7U) & 1);
a->used += 2;
#endif
}
mp_clamp (a);
return MP_OKAY;
}
/* store in unsigned [big endian] format */
static int mp_to_unsigned_bin (mp_int * a, unsigned char *b)
{
int x, res;
mp_int t;
if ((res = mp_init_copy (&t, a)) != MP_OKAY) {
return res;
}
x = 0;
while (mp_iszero (&t) == 0) {
#ifndef MP_8BIT
b[x++] = (unsigned char) (t.dp[0] & 255);
#else
b[x++] = (unsigned char) (t.dp[0] | ((t.dp[1] & 0x01) << 7));
#endif
if ((res = mp_div_2d (&t, 8, &t, NULL)) != MP_OKAY) {
mp_clear (&t);
return res;
}
}
bn_reverse (b, x);
mp_clear (&t);
return MP_OKAY;
}
/* shift right by a certain bit count (store quotient in c, optional remainder in d) */
static int mp_div_2d (mp_int * a, int b, mp_int * c, mp_int * d)
{
mp_digit D, r, rr;
int x, res;
mp_int t;
/* if the shift count is <= 0 then we do no work */
if (b <= 0) {
res = mp_copy (a, c);
if (d != NULL) {
mp_zero (d);
}
return res;
}
if ((res = mp_init (&t)) != MP_OKAY) {
return res;
}
/* get the remainder */
if (d != NULL) {
if ((res = mp_mod_2d (a, b, &t)) != MP_OKAY) {
mp_clear (&t);
return res;
}
}
/* copy */
if ((res = mp_copy (a, c)) != MP_OKAY) {
mp_clear (&t);
return res;
}
/* shift by as many digits in the bit count */
if (b >= (int)DIGIT_BIT) {
mp_rshd (c, b / DIGIT_BIT);
}
/* shift any bit count < DIGIT_BIT */