-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy paths3_run_fengwu_ecmwf.py
240 lines (190 loc) · 9.42 KB
/
s3_run_fengwu_ecmwf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
import os
import numpy as np
import onnx
import onnxruntime as ort
import xarray as xr
import argparse
from pathlib import Path
import datetime
# Define the coordinates
lat = np.linspace(90, -90, 721)
lon = np.linspace(0, 359.75, 1440)
# FengWu channel definitions
surface_channels = ['u10m', 'v10m', 't2m', 'msl']
variables = ['z', 'q', 'u', 'v', 't']
pressure_levels = ['50', '100', '150', '200', '250', '300', '400', '500', '600', '700', '850', '925', '1000']
fengwu_channels = surface_channels + [f"{var}{level}" for var in variables for level in pressure_levels]
def parse_arguments():
parser = argparse.ArgumentParser(description='Run inference for a date range with FengWu')
parser.add_argument('--start_date', type=str, required=True,
help='Start date in YYYYMMDD format')
parser.add_argument('--end_date', type=str, required=True,
help='End date in YYYYMMDD format')
parser.add_argument('--inference_input_dir', type=str, required=True,
help='Directory containing input files for current time')
parser.add_argument('--inference_input_dir_minus_6', type=str, required=True,
help='Directory containing input files for 6 hours prior')
parser.add_argument('--inference_output_dir', type=str, required=True,
help='Directory for saving inference results')
parser.add_argument('--model_dir', type=str, default='models',
help='Directory containing ONNX models')
parser.add_argument('--ic', type=str, default='hres',
help='Initial condition')
return parser.parse_args()
def generate_time_list(start_date, end_date):
start = datetime.datetime.strptime(start_date, "%Y%m%d%H")
end = datetime.datetime.strptime(end_date, "%Y%m%d%H")
current = start
time_list = []
while current <= end:
time_list.append(current)
current += datetime.timedelta(days=1)
return time_list
def ensure_directory_exists(path):
Path(path).mkdir(parents=True, exist_ok=True)
def setup_model_sessions(model_dir):
# Load model
model_6 = onnx.load(os.path.join(model_dir, 'fengwu_v2.onnx'))
# Set the behavior of onnxruntime
options = ort.SessionOptions()
options.enable_cpu_mem_arena = False
options.enable_mem_pattern = False
options.enable_mem_reuse = False
options.intra_op_num_threads = 4
# Set the behavior of cuda provider
cuda_provider_options = {'arena_extend_strategy': 'kSameAsRequested'}
# Initialize session
ort_session_6 = ort.InferenceSession(
os.path.join(model_dir, 'fengwu_v2.onnx'),
sess_options=options,
providers=[('CUDAExecutionProvider', cuda_provider_options)]
)
return ort_session_6
# def prepare_fengwu_input(date, input_dir, input_dir_minus_6):
# # Load input data for current time
# input_file = os.path.join(input_dir, f"pangu_hresan_init_{date.strftime('%Y%m%d%H')}.nc")
# ds_in = xr.open_dataarray(input_file)
# # Load input data for 6 hours prior
# date_minus_6 = date - datetime.timedelta(hours=6)
# input_file_minus_6 = os.path.join(input_dir_minus_6, f"pangu_hresan_init_{date_minus_6.strftime('%Y%m%d%H')}.nc")
# ds_in_minus_6 = xr.open_dataarray(input_file_minus_6)
# # Stack data into the format expected by FengWu [69, 721, 1440]
# input1 = np.stack([ds_in.sel(channel=surface_channels).to_numpy().squeeze()] +
# [ds_in.sel(channel=f"{var}{level}").to_numpy().squeeze() for var in variables for level in pressure_levels],
# axis=0).astype(np.float32)
# input2 = np.stack([ds_in_minus_6.sel(channel=surface_channels).to_numpy().squeeze()] +
# [ds_in_minus_6.sel(channel=f"{var}{level}").to_numpy().squeeze() for var in variables for level in pressure_levels],
# axis=0).astype(np.float32)
# print('inputs shape:', input1.shape, input2.shape)
# return input1, input2
def prepare_fengwu_input(date, input_dir, input_dir_minus_6, ic):
# Load input data for current time
input_file = os.path.join(input_dir, f"pangu_{ic}_init_{date.strftime('%Y%m%d%H')}.nc")
try:
ds_in = xr.open_dataarray(input_file)
except FileNotFoundError:
raise FileNotFoundError(f"Input file not found: {input_file}")
# Load input data for 6 hours prior
date_minus_6 = date - datetime.timedelta(hours=6)
input_file_minus_6 = os.path.join(input_dir_minus_6, f"pangu_{ic}_init_{date_minus_6.strftime('%Y%m%d%H')}.nc")
try:
ds_in_minus_6 = xr.open_dataarray(input_file_minus_6)
except FileNotFoundError:
raise FileNotFoundError(f"Input file not found: {input_file_minus_6}")
# Prepare input1
input1_list = []
# Surface channels
for sfc_channel in surface_channels:
surface_data = ds_in.sel(channel=sfc_channel).to_numpy().squeeze()
input1_list.append(surface_data)
print(f"Shape of surface_data: {surface_data.shape}")
# Upper-air channels
for var in variables:
for level in pressure_levels:
var_level_data = ds_in.sel(channel=f"{var}{level}").to_numpy().squeeze()
print(f"Shape of {var}{level}: {var_level_data.shape}")
input1_list.append(var_level_data)
input1 = np.stack(input1_list, axis=0).astype(np.float32)
print(f"Shape of input1 after stacking: {input1.shape}")
# Prepare input2
input2_list = []
# Surface channels
for sfc_channel in surface_channels:
surface_data_minus_6 = ds_in_minus_6.sel(channel=sfc_channel).to_numpy().squeeze()
input2_list.append(surface_data_minus_6)
print(f"Shape of surface_data_minus_6: {surface_data_minus_6.shape}")
# Upper-air channels
for var in variables:
for level in pressure_levels:
var_level_data_minus_6 = ds_in_minus_6.sel(channel=f"{var}{level}").to_numpy().squeeze()
print(f"Shape of {var}{level} in input2: {var_level_data_minus_6.shape}")
input2_list.append(var_level_data_minus_6)
input2 = np.stack(input2_list, axis=0).astype(np.float32)
print(f"Shape of input2 after stacking: {input2.shape}")
return input1, input2
def run_inference(date, input_dir, input_dir_minus_6, output_dir, ort_session_6, data_mean, data_std, ic):
# Create output directory for this date
#date_output_dir = os.path.join(output_dir, date.strftime('%Y%m%d%H'))
date_output_dir = output_dir
ensure_directory_exists(date_output_dir)
# Check if all outputs already exist
all_exists = True
for i in range(56):
nc_file = os.path.join(date_output_dir, f'fengwu_{ic}_pred_{str((i+1)*6).zfill(3)}.nc')
if not os.path.exists(nc_file):
all_exists = False
break
if all_exists:
print(f"All outputs already exist for {date.strftime('%Y-%m-%d')}, skipping...")
return
# Prepare input data
input_current, input_prior = prepare_fengwu_input(date, input_dir, input_dir_minus_6, ic)
# Normalize input data
input_current_after_norm = (input_current - data_mean) / data_std
input_prior_after_norm = (input_prior - data_mean) / data_std
input_fengwu = np.concatenate((input_prior_after_norm, input_current_after_norm), axis=0)[np.newaxis, :, :, :]
input_fengwu = input_fengwu.astype(np.float32)
# print(input_fengwu.shape)
input = input_fengwu
for i in range(40):
print(f'Processing {date.strftime("%Y-%m-%d")} - {(i+1)*6} hour')
output = ort_session_6.run(None, {'input':input})[0]
input = np.concatenate((input[:, 69:], output[:, :69]), axis=1)
output = (output[0, :69] * data_std) + data_mean
# Create prediction timedelta
pred_timedelta = np.timedelta64((i+1)*6, 'h').astype('timedelta64[ns]')
# Create xarray DataArrays with proper dimensions
da_output = xr.DataArray(
data=np.expand_dims(np.expand_dims(output, axis=0), axis=0),
coords={
'init_time': [date],
'prediction_timedelta': [pred_timedelta],
'channel': fengwu_channels,
'lat': lat,
'lon': lon
},
dims=['init_time', 'prediction_timedelta', 'channel', 'lat', 'lon']
).sel(lat=slice(60,20), lon=slice(220,300))
# Save as netCDF
output_filename = os.path.join(date_output_dir, f'fengwu_{ic}_pred_{str((i+1)*6).zfill(3)}.nc')
da_output.to_netcdf(output_filename)
def main():
args = parse_arguments()
# Ensure output directory exists
ensure_directory_exists(args.inference_output_dir)
# Setup model sessions
ort_session_6 = setup_model_sessions(args.model_dir)
# Load normalization data
data_mean = np.load(os.path.join(args.model_dir, "data_mean.npy"))[:, np.newaxis, np.newaxis]
data_std = np.load(os.path.join(args.model_dir, "data_std.npy"))[:, np.newaxis, np.newaxis]
# Generate list of dates to process
dates = generate_time_list(args.start_date, args.end_date)
# Process each date
for date in dates:
try:
run_inference(date, args.inference_input_dir, args.inference_input_dir_minus_6,
args.inference_output_dir, ort_session_6, data_mean, data_std, args.ic)
except Exception as e:
print(f"Error processing {date.strftime('%Y-%m-%d')}: {str(e)}")
if __name__ == "__main__":
main()