File tree 2 files changed +6
-2
lines changed
Data/List/Relation/Binary
2 files changed +6
-2
lines changed Original file line number Diff line number Diff line change 4
4
-- Documentation for pointwise equality over `List`s
5
5
------------------------------------------------------------------------
6
6
7
- {-# OPTIONS --warning noMissingDefinitions #-}
7
+ {-# OPTIONS --allow-unsolved-metas #-}
8
8
9
9
module README.Data.List.Relation.Binary.Equality where
10
10
@@ -37,6 +37,7 @@ lem₁ = refl
37
37
-- equality of two lists of the type `List (ℕ → ℕ)`:
38
38
39
39
lem₂ : (λ x → 2 * x + 2 ) ∷ [] ≡ (λ x → 2 * (x + 1 )) ∷ []
40
+ lem₂ = {!!}
40
41
41
42
-- In such a case it is impossible to prove the two lists equal with
42
43
-- refl as the two functions are not propositionally equal. In the
@@ -56,6 +57,7 @@ open import Relation.Binary.PropositionalEquality using (_≗_)
56
57
open import Data.List.Relation.Binary.Pointwise using (Pointwise)
57
58
58
59
lem₃ : Pointwise _≗_ ((λ x → x + 1 ) ∷ []) ((λ x → x + 2 ∸ 1 ) ∷ [])
60
+ lem₃ = {!!}
59
61
60
62
-- the library provides some nicer wrappers and infix notation in the
61
63
-- folder "Data.List.Relation.Binary.Equality".
Original file line number Diff line number Diff line change 4
4
-- An explanation about how mathematical hierarchies are laid out.
5
5
------------------------------------------------------------------------
6
6
7
- {-# OPTIONS --warning noMissingDefinitions #-}
7
+ {-# OPTIONS --allow-unsolved-metas #-}
8
8
9
9
module README.Design.Hierarchies where
10
10
@@ -261,9 +261,11 @@ record Semigroup : Set (suc (a ⊔ ℓ)) where
261
261
-- one to translate between left and right identities.
262
262
263
263
total⇒refl : ∀ {_∼_ : Rel A ℓ} → Total _∼_ → Reflexive _∼_
264
+ total⇒refl = {!!}
264
265
265
266
idˡ+comm⇒idʳ : ∀ {_≈_ : Rel A ℓ} {e _∙_} → Commutative _≈_ _∙_ →
266
267
LeftIdentity _≈_ e _∙_ → RightIdentity _≈_ e _∙_
268
+ idˡ+comm⇒idʳ = {!!}
267
269
268
270
------------------------------------------------------------------------
269
271
-- X.Construct
You can’t perform that action at this time.
0 commit comments