The library has been tested using Agda 2.7.0 and 2.7.0.1.
-
In
Algebra.Apartness.Structures
, renamedsym
fromIsApartnessRelation
to#-sym
in order to avoid overloaded projection.irrefl
andcotrans
are similarly renamed for the sake of consistency. -
In
Algebra.Definitions.RawMagma
andRelation.Binary.Construct.Interior.Symmetric
, the record constructors_,_
incorrectly had no declared fixity. They have been given the fixityinfixr 4 _,_
, consistent with that ofData.Product.Base
.
- The implementation of
≤-total
inData.Nat.Properties
has been altered to use operations backed by primitives, rather than recursion, making it significantly faster. However, its reduction behaviour on open terms may have changed.
- Moved the concept
Irrelevant
of irrelevance (h-proposition) fromRelation.Nullary
to its own dedicated moduleRelation.Nullary.Irrelevant
.
-
In
Algebra.Definitions.RawMagma
:_∣∣_ ↦ _∥_ _∤∤_ ↦ _∦_
-
In
Algebra.Lattice.Properties.BooleanAlgebra
⊥≉⊤ ↦ ¬⊥≈⊤ ⊤≉⊥ ↦ ¬⊤≈⊥
-
In
Algebra.Module.Consequences
*ₗ-assoc+comm⇒*ᵣ-assoc ↦ *ₗ-assoc∧comm⇒*ᵣ-assoc *ₗ-assoc+comm⇒*ₗ-*ᵣ-assoc ↦ *ₗ-assoc∧comm⇒*ₗ-*ᵣ-assoc *ᵣ-assoc+comm⇒*ₗ-assoc ↦ *ᵣ-assoc∧comm⇒*ₗ-assoc *ₗ-assoc+comm⇒*ₗ-*ᵣ-assoc ↦ *ₗ-assoc∧comm⇒*ₗ-*ᵣ-assoc
-
In
Algebra.Modules.Structures.IsLeftModule
:uniqueˡ‿⁻ᴹ ↦ Algebra.Module.Properties.LeftModule.inverseˡ-uniqueᴹ uniqueʳ‿⁻ᴹ ↦ Algebra.Module.Properties.LeftModule.inverseʳ-uniqueᴹ
-
In
Algebra.Modules.Structures.IsRightModule
:uniqueˡ‿⁻ᴹ ↦ Algebra.Module.Properties.RightModule.inverseˡ-uniqueᴹ uniqueʳ‿⁻ᴹ ↦ Algebra.Module.Properties.RightModule.inverseʳ-uniqueᴹ
-
In
Algebra.Properties.Magma.Divisibility
:∣∣-sym ↦ ∥-sym ∣∣-respˡ-≈ ↦ ∥-respˡ-≈ ∣∣-respʳ-≈ ↦ ∥-respʳ-≈ ∣∣-resp-≈ ↦ ∥-resp-≈ ∤∤-sym -≈ ↦ ∦-sym ∤∤-respˡ-≈ ↦ ∦-respˡ-≈ ∤∤-respʳ-≈ ↦ ∦-respʳ-≈ ∤∤-resp-≈ ↦ ∦-resp-≈ ∣-respʳ-≈ ↦ ∣ʳ-respʳ-≈ ∣-respˡ-≈ ↦ ∣ʳ-respˡ-≈ ∣-resp-≈ ↦ ∣ʳ-resp-≈ x∣yx ↦ x∣ʳyx xy≈z⇒y∣z ↦ xy≈z⇒y∣ʳz
-
In
Algebra.Properties.Monoid.Divisibility
:∣∣-refl ↦ ∥-refl ∣∣-reflexive ↦ ∥-reflexive ∣∣-isEquivalence ↦ ∥-isEquivalence ε∣_ ↦ ε∣ʳ_ ∣-refl ↦ ∣ʳ-refl ∣-reflexive ↦ ∣ʳ-reflexive ∣-isPreorder ↦ ∣ʳ-isPreorder ∣-preorder ↦ ∣ʳ-preorder
-
In
Algebra.Properties.Semigroup.Divisibility
:∣∣-trans ↦ ∥-trans ∣-trans ↦ ∣ʳ-trans
-
In
Algebra.Structures.Group
:uniqueˡ-⁻¹ ↦ Algebra.Properties.Group.inverseˡ-unique uniqueʳ-⁻¹ ↦ Algebra.Properties.Group.inverseʳ-unique
-
In
Data.List.Base
:and ↦ Data.Bool.ListAction.and or ↦ Data.Bool.ListAction.or any ↦ Data.Bool.ListAction.any all ↦ Data.Bool.ListAction.all sum ↦ Data.Nat.ListAction.sum product ↦ Data.Nat.ListAction.product
-
In
Data.List.Properties
:sum-++ ↦ Data.Nat.ListAction.Properties.sum-++ ∈⇒∣product ↦ Data.Nat.ListAction.Properties.∈⇒∣product product≢0 ↦ Data.Nat.ListAction.Properties.product≢0 ∈⇒≤product ↦ Data.Nat.ListAction.Properties.∈⇒≤product
-
In
Data.List.Relation.Binary.Permutation.Propositional.Properties
:sum-↭ ↦ Data.Nat.ListAction.Properties.sum-↭ product-↭ ↦ Data.Nat.ListAction.Properties.product-↭
-
Algebra.Module.Properties.{Bimodule|LeftModule|RightModule}
. -
Data.List.Base.{and|or|any|all}
have been lifted out intoData.Bool.ListAction
. -
Data.List.Base.{sum|product}
and their properties have been lifted out intoData.Nat.ListAction
andData.Nat.ListAction.Properties
. -
Data.List.Relation.Binary.Prefix.Propositional.Properties
showing the equivalence to left divisibility induced by the list monoid. -
Data.List.Relation.Binary.Suffix.Propositional.Properties
showing the equivalence to right divisibility induced by the list monoid. -
Data.Sign.Show
to show a sign
-
In
Algebra.Construct.Pointwise
:isNearSemiring : IsNearSemiring _≈_ _+_ _*_ 0# → IsNearSemiring (liftRel _≈_) (lift₂ _+_) (lift₂ _*_) (lift₀ 0#) isSemiringWithoutOne : IsSemiringWithoutOne _≈_ _+_ _*_ 0# → IsSemiringWithoutOne (liftRel _≈_) (lift₂ _+_) (lift₂ _*_) (lift₀ 0#) isCommutativeSemiringWithoutOne : IsCommutativeSemiringWithoutOne _≈_ _+_ _*_ 0# → IsCommutativeSemiringWithoutOne (liftRel _≈_) (lift₂ _+_) (lift₂ _*_) (lift₀ 0#) isCommutativeSemiring : IsCommutativeSemiring _≈_ _+_ _*_ 0# 1# → IsCommutativeSemiring (liftRel _≈_) (lift₂ _+_) (lift₂ _*_) (lift₀ 0#) (lift₀ 1#) isIdempotentSemiring : IsIdempotentSemiring _≈_ _+_ _*_ 0# 1# → IsIdempotentSemiring (liftRel _≈_) (lift₂ _+_) (lift₂ _*_) (lift₀ 0#) (lift₀ 1#) isKleeneAlgebra : IsKleeneAlgebra _≈_ _+_ _*_ _⋆ 0# 1# → IsKleeneAlgebra (liftRel _≈_) (lift₂ _+_) (lift₂ _*_) (lift₁ _⋆) (lift₀ 0#) (lift₀ 1#) isQuasiring : IsQuasiring _≈_ _+_ _*_ 0# 1# → IsQuasiring (liftRel _≈_) (lift₂ _+_) (lift₂ _*_) (lift₀ 0#) (lift₀ 1#) isCommutativeRing : IsCommutativeRing _≈_ _+_ _*_ -_ 0# 1# → IsCommutativeRing (liftRel _≈_) (lift₂ _+_) (lift₂ _*_) (lift₁ -_) (lift₀ 0#) (lift₀ 1#) commutativeMonoid : CommutativeMonoid c ℓ → CommutativeMonoid (a ⊔ c) (a ⊔ ℓ) nearSemiring : NearSemiring c ℓ → NearSemiring (a ⊔ c) (a ⊔ ℓ) semiringWithoutOne : SemiringWithoutOne c ℓ → SemiringWithoutOne (a ⊔ c) (a ⊔ ℓ) commutativeSemiringWithoutOne : CommutativeSemiringWithoutOne c ℓ → CommutativeSemiringWithoutOne (a ⊔ c) (a ⊔ ℓ) commutativeSemiring : CommutativeSemiring c ℓ → CommutativeSemiring (a ⊔ c) (a ⊔ ℓ) idempotentSemiring : IdempotentSemiring c ℓ → IdempotentSemiring (a ⊔ c) (a ⊔ ℓ) kleeneAlgebra : KleeneAlgebra c ℓ → KleeneAlgebra (a ⊔ c) (a ⊔ ℓ) quasiring : Quasiring c ℓ → Quasiring (a ⊔ c) (a ⊔ ℓ) commutativeRing : CommutativeRing c ℓ → CommutativeRing (a ⊔ c) (a ⊔ ℓ)
-
In
Algebra.Modules.Properties
:inverseˡ-uniqueᴹ : x +ᴹ y ≈ 0ᴹ → x ≈ -ᴹ y inverseʳ-uniqueᴹ : x +ᴹ y ≈ 0ᴹ → y ≈ -ᴹ x
-
In
Algebra.Properties.Magma.Divisibility
:∣ˡ-respʳ-≈ : _∣ˡ_ Respectsʳ _≈_ ∣ˡ-respˡ-≈ : _∣ˡ_ Respectsˡ _≈_ ∣ˡ-resp-≈ : _∣ˡ_ Respects₂ _≈_ x∣ˡxy : ∀ x y → x ∣ˡ x ∙ y xy≈z⇒x∣ˡz : ∀ x y {z} → x ∙ y ≈ z → x ∣ˡ z
-
In
Algebra.Properties.Monoid.Divisibility
:ε∣ˡ_ : ∀ x → ε ∣ˡ x ∣ˡ-refl : Reflexive _∣ˡ_ ∣ˡ-reflexive : _≈_ ⇒ _∣ˡ_ ∣ˡ-isPreorder : IsPreorder _≈_ _∣ˡ_ ∣ˡ-preorder : Preorder a ℓ _
-
In
Algebra.Properties.Semigroup.Divisibility
:∣ˡ-trans : Transitive _∣ˡ_ x∣ʳy⇒x∣ʳzy : x ∣ʳ y → x ∣ʳ z ∙ y x∣ʳy⇒xz∣ʳyz : x ∣ʳ y → x ∙ z ∣ʳ y ∙ z x∣ˡy⇒zx∣ˡzy : x ∣ˡ y → z ∙ x ∣ˡ z ∙ y x∣ˡy⇒x∣ˡyz : x ∣ˡ y → x ∣ˡ y ∙ z
-
In
Algebra.Properties.CommutativeSemigroup.Divisibility
:∙-cong-∣ : x ∣ y → a ∣ b → x ∙ a ∣ y ∙ b
-
In
Data.List.Properties
:map-applyUpTo : ∀ (f : ℕ → A) (g : A → B) n → map g (applyUpTo f n) ≡ applyUpTo (g ∘ f) n map-applyDownFrom : ∀ (f : ℕ → A) (g : A → B) n → map g (applyDownFrom f n) ≡ applyDownFrom (g ∘ f) n map-upTo : ∀ (f : ℕ → A) n → map f (upTo n) ≡ applyUpTo f n map-downFrom : ∀ (f : ℕ → A) n → map f (downFrom n) ≡ applyDownFrom f n
-
In
Data.List.Relation.Binary.Permutation.PropositionalProperties
:filter-↭ : ∀ (P? : Pred.Decidable P) → xs ↭ ys → filter P? xs ↭ filter P? ys
-
In
Relation.Binary.Construct.Add.Infimum.Strict
:<₋-accessible-⊥₋ : Acc _<₋_ ⊥₋ <₋-accessible[_] : Acc _<_ x → Acc _<₋_ [ x ] <₋-wellFounded : WellFounded _<_ → WellFounded _<₋_
-
In
Relation.Nullary.Decidable.Core
:⊤-dec : Dec {a} ⊤ ⊥-dec : Dec {a} ⊥