-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodelx.py
155 lines (122 loc) · 5.41 KB
/
modelx.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
import tkinter as tk
from tkinter import filedialog, messagebox, simpledialog
import numpy as np
import librosa
import joblib
import matplotlib.pyplot as plt
from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay
# Load the tuned models
rf_arousal = joblib.load("./model/rf_arousal_model.pkl")
rf_valence = joblib.load("./model/rf_valence_model.pkl")
root = tk.Tk()
root.title("Song Arousal and Valence Prediction")
root.geometry("500x500")
song_listbox = tk.Listbox(root, width=50, height=10)
song_listbox.pack(pady=20)
arousal_label = tk.Label(root, text="Arousal: --", font=("Helvetica", 14))
arousal_label.pack(pady=10)
valence_label = tk.Label(root, text="Valence: --", font=("Helvetica", 14))
valence_label.pack(pady=10)
true_labels = []
# Define the emotions and their corresponding valence/arousal ranges
emotion_means = {
"Happy": (0.7, 0.7),
"Sad": (-0.7, -0.7),
"Calm": (0.0, -0.7),
"Anger": (-0.7, 0.7),
"Joy": (0.9, 0.9),
"Fear": (-0.9, 0.9),
"Mixed": (0.0, 0.0),
}
def extract_features_for_song(song_path, model_type):
y, sr = librosa.load(song_path, sr=None)
pcm_RMSenergy = float(np.mean(librosa.feature.rms(y=y)))
F0final_stddev = float(np.std(librosa.feature.zero_crossing_rate(y=y)))
F0final_mean = float(np.mean(librosa.feature.zero_crossing_rate(y=y)))
voicing_stddev = float(np.std(librosa.feature.spectral_flatness(y=y)))
spectral_flux_mean = float(np.mean(librosa.feature.spectral_rolloff(y=y, sr=sr)))
if model_type == "arousal":
features = [
pcm_RMSenergy, F0final_stddev, F0final_mean, voicing_stddev, spectral_flux_mean
]
elif model_type == "valence":
features = [
F0final_stddev, F0final_mean, voicing_stddev, spectral_flux_mean, pcm_RMSenergy
]
return features
def predict_arousal_valence(song_path):
arousal_features = np.array(extract_features_for_song(song_path, "arousal")).reshape(1, -1)
arousal = rf_arousal.predict(arousal_features)[0]
valence_features = np.array(extract_features_for_song(song_path, "valence")).reshape(1, -1)
valence = rf_valence.predict(valence_features)[0]
return arousal, valence
def get_emotion_label(arousal, valence):
if -1 <= valence <= -0.5 and -1 <= arousal <= -0.5:
return "Sad", "#ff7f0e"
elif 0 <= valence <= 1 and 0 <= arousal <= 1:
return "Happy", "#1f77b4"
elif 0 <= valence <= 1 and -1 <= arousal <= 0:
return "Calm", "#2ca02c"
elif -1 <= valence <= 0 and 0 <= arousal <= 1:
return "Anger", "#d62728"
elif 0.7 <= valence <= 1 and 0.7 <= arousal <= 1:
return "Joy", "#9467bd"
elif -1 <= valence <= -0.7 and 0.7 <= arousal <= 1:
return "Fear", "#8c564b"
else:
return "Mixed", "#7f7f7f"
def plot_arousal_valence(arousal, valence):
plt.figure(figsize=(6, 6))
emotion, color = get_emotion_label(arousal, valence)
plt.scatter(valence, arousal, color=color, label=f"Emotion: {emotion}", s=100)
plt.xlabel("Valence (Negative to Positive)")
plt.ylabel("Arousal (Low to High)")
plt.title("Arousal vs. Valence for Song")
plt.xlim(-1, 1)
plt.ylim(-1, 1)
plt.axhline(0, color='gray', linestyle='--')
plt.axvline(0, color='gray', linestyle='--')
plt.grid(True)
plt.legend()
plt.show()
def add_song():
song_path = filedialog.askopenfilename(filetypes=[("Audio Files", "*.wav *.mp3 *.flac")])
if song_path:
song_listbox.insert(tk.END, song_path)
emotion_selection = simpledialog.askstring("Input", "Select the emotion (e.g., Happy, Sad, Calm, Anger, Joy, Fear, Mixed):")
if emotion_selection in emotion_means:
true_labels.append(emotion_selection)
else:
messagebox.showerror("Invalid Input", "Please enter a valid emotion label.")
def show_arousal_valence():
selected_song_idx = song_listbox.curselection()
if not selected_song_idx:
messagebox.showwarning("No Song Selected", "Please select a song to analyze.")
return
song_path = song_listbox.get(selected_song_idx)
arousal, valence = predict_arousal_valence(song_path)
arousal_label.config(text=f"Arousal: {arousal:.2f}")
valence_label.config(text=f"Valence: {valence:.2f}")
plot_arousal_valence(arousal, valence)
def show_confusion_matrix():
if not true_labels:
messagebox.showwarning("No Test Songs", "Please add and label songs to test.")
return
predicted_labels = []
for idx in range(song_listbox.size()):
song_path = song_listbox.get(idx)
arousal, valence = predict_arousal_valence(song_path)
predicted_emotion, _ = get_emotion_label(arousal, valence)
predicted_labels.append(predicted_emotion)
cm = confusion_matrix(true_labels, predicted_labels, labels=list(emotion_means.keys()))
disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=list(emotion_means.keys()))
disp.plot(cmap="Blues", xticks_rotation=45)
plt.title("Confusion Matrix for Emotion Prediction")
plt.show()
add_song_button = tk.Button(root, text="Add Song", command=add_song)
add_song_button.pack(pady=10)
analyze_button = tk.Button(root, text="Show Arousal and Valence", command=show_arousal_valence)
analyze_button.pack(pady=10)
confusion_matrix_button = tk.Button(root, text="Show Confusion Matrix", command=show_confusion_matrix)
confusion_matrix_button.pack(pady=10)
root.mainloop()