-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathtest_differentiable_nms_backprop_on_subset.py
333 lines (282 loc) · 17.3 KB
/
test_differentiable_nms_backprop_on_subset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
import math
import os, sys
from torch.autograd import Variable
import torch.nn.functional as F
sys.path.append(os.getcwd())
import numpy as np
import torch
torch.set_printoptions(profile="full")
torch.set_printoptions(precision=4)
from lib.groomed_nms import differentiable_nms, get_groups
from lib.loss.aploss import APLoss
from lib.loss.ranknetloss import RankNetLoss
loss_1_wt = 0.05
def check_backward(acceptance_prob, targets, scores= None, ious_2d_for_nms= None, w= None, loss_to_use= "ce", example_weights= None, fg_index_for_nms= None, groups= None, groups_in_loss= False, print_in_single_line= False):
loss_function_2 = torch.nn.BCELoss(reduction= 'none')
loss_2_wt = 0.0
if loss_2_wt > 0.0:
print("Using sum of {} loss + {} * celoss".format(loss_to_use, loss_2_wt))
else:
print("Using {} loss".format(loss_to_use))
if groups_in_loss:
print("Using groups in loss")
if loss_to_use == "ce":
loss_function = torch.nn.BCELoss(reduction= 'none')
# acceptance_prob = F.sigmoid(acceptance_prob)
elif loss_to_use == "ap":
loss_function = APLoss()
elif loss_to_use == "mse":
loss_function = torch.nn.L1Loss(reduction= 'none')
elif loss_to_use == "ranknet":
loss_function = RankNetLoss()
if not print_in_single_line:
print("After NMS probabilities = ", acceptance_prob)
print("Targets = ", targets)
if not groups_in_loss:
loss_1 = loss_1_wt * loss_function(acceptance_prob, targets)
if loss_to_use == "ce" or loss_to_use == "mse":
if example_weights is not None:
loss_1 = loss_1 * example_weights
loss_1 = loss_1.mean()
else:
num_groups = len(groups)
for grp_index in range(num_groups):
grp_box_index = fg_index_for_nms[groups[grp_index]]
loss_group = loss_1_wt * loss_function(acceptance_prob[grp_box_index], targets[grp_box_index])
if loss_to_use == "ce" or loss_to_use == "mse":
if example_weights is not None:
loss_group = loss_group * example_weights[grp_box_index]
loss_group = loss_group.mean()
if grp_index == 0:
loss_1 = loss_group
else:
loss_1 += loss_group
loss_1 /= num_groups
if loss_2_wt > 0.0:
loss_2 = loss_2_wt*loss_function_2(acceptance_prob, targets)
if example_weights is not None:
loss_2 = loss_2 * example_weights
else:
loss_2 = 0
loss = loss_1 + loss_2
loss = loss.mean()
print("Loss = ", loss)
loss.backward(retain_graph=True)
# torch.nn.utils.clip_grad_value_(scores, 1)
if print_in_single_line:
print(" Index, Bef NMS, Aft NMS, Relev, Grad")
disp_tensor = torch.cat([torch.arange(num_boxes_display).float().cuda().unsqueeze(1), scores[:num_boxes_display].unsqueeze(1), acceptance_prob[:num_boxes_display].unsqueeze(1), targets[:num_boxes_display]. unsqueeze(1)], dim= 1)
if example_weights is not None:
disp_tensor = torch.cat([disp_tensor, example_weights[:num_boxes_display]. unsqueeze(1)], dim= 1)
disp_tensor = torch.cat([disp_tensor, scores.grad[:num_boxes_display].unsqueeze(1)], dim= 1)
print(disp_tensor)
print("No of negative grad = {}\n".format(torch.sum(scores.grad < 0)))
if scores is not None:
if not print_in_single_line:
print("Scores gradient = ", scores.grad)
# retain_graph allows but do not accumulate the gradients again
scores.grad.data.zero_()
if not print_in_single_line:
if ious_2d_for_nms is not None:
print("IOU_overlaps gradient = ", ious_2d_for_nms.grad)
if w is not None:
print("w gradient = ", w.grad)
def testing_with_loss(scores_to_nms, ious_2d_for_nms, fg_index_for_nms, num_boxes_for_nms, loss_to_use, scoring_method, sorting_method, temperature, sorting_temperature, cuda_testing= True, fg_index_gt_all_cases= None, group_boxes = False, groups_in_loss= False):
groups = get_groups(iou_unsorted= ious_2d_for_nms, group_threshold= 0.4, scores_unsorted= scores_to_nms[fg_index_for_nms])
#====================================================================
# When the top rank is a failure
#====================================================================
fg_index_gt = fg_index_gt_all_cases[0]
targets_for_nms = torch.zeros((num_boxes, )).float()
targets_for_nms[fg_index_gt] = 1
loss_weights = torch.ones((num_boxes, )).float()
loss_weights[fg_index_gt] = np.power(num_boxes/len(fg_index_gt), weighing_power)
if cuda_testing:
targets_for_nms = targets_for_nms.cuda()
loss_weights = loss_weights.cuda()
_, _, scores_after_nms_img = differentiable_nms(scores_unsorted= scores_to_nms[fg_index_for_nms], iou_unsorted= ious_2d_for_nms, temperature= temperature, return_sorted_prob= False, pruning_method= scoring_method, sorting_method= sorting_method, sorting_temperature= sorting_temperature, group_boxes = group_boxes)
scores_after_nms[fg_index_for_nms] = scores_after_nms_img
check_backward(acceptance_prob= scores_after_nms[:num_boxes_for_nms], targets= targets_for_nms[:num_boxes_for_nms], scores= scores_to_nms, ious_2d_for_nms= ious_2d_for_nms, loss_to_use= loss_to_use, example_weights=loss_weights[:num_boxes_for_nms], fg_index_for_nms= fg_index_for_nms, groups= groups, groups_in_loss= groups_in_loss, print_in_single_line= True)
#====================================================================
# When the top rank is a success
#====================================================================
fg_index_gt = fg_index_gt_all_cases[1]
targets_for_nms = torch.zeros((num_boxes, )).float()
targets_for_nms[fg_index_gt] = 1
loss_weights = torch.ones((num_boxes, )).float()
loss_weights[fg_index_gt] = np.power(num_boxes/len(fg_index_gt), weighing_power)
if cuda_testing:
targets_for_nms = targets_for_nms.cuda()
loss_weights = loss_weights.cuda()
_, _, scores_after_nms_img = differentiable_nms(scores_unsorted= scores_to_nms[fg_index_for_nms], iou_unsorted= ious_2d_for_nms, temperature= temperature, return_sorted_prob= False, pruning_method= scoring_method, sorting_method= sorting_method, sorting_temperature= sorting_temperature, group_boxes = group_boxes)
scores_after_nms[fg_index_for_nms] = scores_after_nms_img
check_backward(acceptance_prob= scores_after_nms[:num_boxes_for_nms], targets= targets_for_nms[:num_boxes_for_nms], scores= scores_to_nms, ious_2d_for_nms= ious_2d_for_nms, loss_to_use= loss_to_use, example_weights=loss_weights[:num_boxes_for_nms], fg_index_for_nms= fg_index_for_nms, groups= groups, groups_in_loss= groups_in_loss, print_in_single_line= True)
#====================================================================
# When only backgrounds
#====================================================================
fg_index_gt = []
targets_for_nms = torch.zeros((num_boxes, )).float()
targets_for_nms[fg_index_gt] = 1
loss_weights = torch.ones((num_boxes, )).float()
if len(fg_index_gt) > 0:
loss_weights[fg_index_gt]= np.power(num_boxes/len(fg_index_gt), weighing_power)
if cuda_testing:
targets_for_nms = targets_for_nms.cuda()
loss_weights = loss_weights.cuda()
_, _, scores_after_nms_img = differentiable_nms(scores_unsorted= scores_to_nms[fg_index_for_nms], iou_unsorted= ious_2d_for_nms, temperature= temperature, return_sorted_prob= False, pruning_method= scoring_method, sorting_method= sorting_method, sorting_temperature= sorting_temperature, group_boxes = group_boxes)
scores_after_nms[fg_index_for_nms] = scores_after_nms_img
check_backward(acceptance_prob= scores_after_nms[:num_boxes_for_nms], targets= targets_for_nms[:num_boxes_for_nms], scores= scores_to_nms, ious_2d_for_nms= ious_2d_for_nms, loss_to_use= loss_to_use, example_weights=loss_weights[:num_boxes_for_nms], fg_index_for_nms= fg_index_for_nms, groups= groups, groups_in_loss= groups_in_loss, print_in_single_line= True)
#==============================================================================
# Main starts here
#==============================================================================
# torch.manual_seed(0)
# nms_overlap_threshold = 0.4
# valid_box_prob_threshold = 0.2
temperature = 0.1
shift= 1
cuda_testing = True
num_boxes_display = 5
'''
print("")
targets_for_nms = torch.Tensor([0.0, 0.0, 0.0, 0.0, 0.0, 0, 1, 0, 1, 0])
scores_to_nms = torch.Tensor([0.1, 0.1 , 0.1, 0.1, 0.1, 0.94449151, 0.98317957, 0.94365776, 0.92837799, 0.91277248])
ious_2d_for_nms = torch.Tensor([[1., 0.94648953, 0.94525505, 0., 0.93143163],
[0.94648953, 1., 0.91186984, 0., 0.95791224],
[0.94525505, 0.91186984, 1., 0., 0.88044045],
[0., 0., 0., 1., 0. ],
[0.93143163, 0.95791224, 0.88044045, 0., 1. ]])
scores_after_nms = torch.zeros(scores_to_nms.shape)
if cuda_testing:
scores_to_nms = scores_to_nms.cuda()
ious_2d_for_nms = ious_2d_for_nms.cuda()
targets_for_nms = targets_for_nms.cuda()
scores_after_nms= scores_after_nms.cuda()
scores_to_nms.requires_grad= True
ious_2d_for_nms.requires_grad= True
_, sorted_index = torch.sort(scores_to_nms, descending= True)
num_boxes_for_nms = min(5, sorted_index.shape[0])
fg_index_for_nms = sorted_index[:num_boxes_for_nms]
if scores_to_nms.is_cuda:
fg_index_np = fg_index_for_nms.cpu()
else:
fg_index_np = fg_index_for_nms
fg_index_np = fg_index_np.clone().numpy()
bg_index_for_nms= torch.from_numpy(np.setdiff1d(np.arange(scores_to_nms.shape[0]), fg_index_np))
if cuda_testing:
bg_index_for_nms = bg_index_for_nms.cuda()
_, invalid_indexes, scores_after_nms_img = differentiable_nms(scores_unsorted= scores_to_nms[fg_index_for_nms], iou_unsorted= ious_2d_for_nms, temperature= temperature, return_sorted_prob= False, scoring_method= "basic")
scores_after_nms[fg_index_for_nms] = scores_after_nms_img
# scores_after_nms[fg_index_for_nms[invalid_indexes] ] = torch.min(scores_to_nms[bg_index_for_nms]) + 1e-3
# scores_after_nms[bg_index_for_nms] = scores_to_nms[bg_index_for_nms]
print("Before NMS probabilities = ", scores_to_nms)
check_backward(acceptance_prob= scores_after_nms, targets= targets_for_nms, scores= scores_to_nms, ious_2d_for_nms= ious_2d_for_nms)
'''
#====================================================================
# Testing gradients
#====================================================================
losses_to_use = ["ap"]#, "mse", "ce"]
num_boxes = 500
num_boxes_select = 250
num_boxes_display = 10
temperature = 0.1
weighing_power = 1.0
scoring_method = "linear"
sorting_method = "hard"
sorting_temperature = 0.0007
groups_in_loss = False
special_box = 7
torch.manual_seed(0)
np.random.seed(0)
data = -np.sort(-np.random.uniform(low=0, high=1, size=(num_boxes, )) )
data = data.tolist()
scores_to_nms = torch.Tensor(data).float()
scores_after_nms = torch.zeros(scores_to_nms.shape)
if cuda_testing:
scores_to_nms = scores_to_nms.cuda()
scores_after_nms= scores_after_nms.cuda()
scores_to_nms.requires_grad= True
_, sorted_index = torch.sort(scores_to_nms, descending= True)
num_boxes_for_nms = min(num_boxes_select, sorted_index.shape[0])
fg_index_for_nms = sorted_index[:num_boxes_for_nms]
fg_index_gt_all_cases = np.zeros((2, 2))
fg_index_gt_all_cases[0] = np.array([3, special_box+1])#[0, special_box, 4]
fg_index_gt_all_cases[1] = np.array([0, special_box ])#[1, special_box, 4]
#==============================================================
# Original testing
#==============================================================
data = np.random.uniform(low=0, high=1, size=(num_boxes_for_nms, num_boxes_for_nms ))
data[num_boxes_display-1] = np.zeros((num_boxes_for_nms, ))
data[:,num_boxes_display-1] = np.zeros((num_boxes_for_nms, ))
data[num_boxes_display-1,num_boxes_display-1] = 1
data = 0.5*(data.transpose(1, 0) + data)
data = data.tolist()
ious_2d_for_nms = torch.Tensor(data).float()
if cuda_testing:
ious_2d_for_nms = ious_2d_for_nms.cuda()
ious_2d_for_nms.requires_grad= True
# group_boxes = False
# for loss_to_use in losses_to_use:
# testing_with_loss(scores_to_nms= scores_to_nms, ious_2d_for_nms= ious_2d_for_nms, fg_index_for_nms= fg_index_for_nms, num_boxes_for_nms= num_boxes_for_nms, loss_to_use= loss_to_use, scoring_method= scoring_method, sorting_method= sorting_method, temperature= temperature, sorting_temperature= sorting_temperature, cuda_testing= True, fg_index_gt_all_cases= fg_index_gt_all_cases, group_boxes = group_boxes)
#==============================================================
# Group/Non-group testing for 1 box
#==============================================================
special_box = [5, 9]
group_boxes = True
print("\n======================== Group Testing for 1 object ======================")
fg_index_gt_all_cases = np.zeros((2, 1))
fg_index_gt_all_cases[0] = np.array([3])
fg_index_gt_all_cases[1] = np.array([0])
data = np.random.uniform(low=0.8, high=1, size=(num_boxes_for_nms, num_boxes_for_nms ))
np.fill_diagonal(data, 1)
data = 0.5*(data.transpose(1, 0) + data)
data = data.tolist()
ious_2d_for_nms = torch.Tensor(data).float()
if cuda_testing:
ious_2d_for_nms = ious_2d_for_nms.cuda()
ious_2d_for_nms.requires_grad= True
for loss_to_use in losses_to_use:
testing_with_loss(scores_to_nms= scores_to_nms, ious_2d_for_nms= ious_2d_for_nms, fg_index_for_nms= fg_index_for_nms, num_boxes_for_nms= num_boxes_for_nms, loss_to_use= loss_to_use, scoring_method= scoring_method, sorting_method= sorting_method, temperature= temperature, sorting_temperature= sorting_temperature, cuda_testing= True, fg_index_gt_all_cases= fg_index_gt_all_cases, group_boxes = group_boxes, groups_in_loss= groups_in_loss)
#==============================================================
# Group/Non-group testing for 2 boxes
#==============================================================
print("\n======================== Group Testing for 2 objects ======================")
fg_index_gt_all_cases = np.zeros((2, 2))
fg_index_gt_all_cases[0] = np.array([3, special_box[0]+1])
fg_index_gt_all_cases[1] = np.array([0, special_box[0] ])
data = np.random.uniform(low=0.8, high=1, size=(num_boxes_for_nms, num_boxes_for_nms ))
data[:special_box[0], special_box[0]:] = 0
data[special_box[0]:, :special_box[0]] = 0
np.fill_diagonal(data, 1)
data = 0.5*(data.transpose(1, 0) + data)
data = data.tolist()
ious_2d_for_nms = torch.Tensor(data).float()
if cuda_testing:
ious_2d_for_nms = ious_2d_for_nms.cuda()
ious_2d_for_nms.requires_grad= True
# group_boxes = False
# for loss_to_use in losses_to_use:
# testing_with_loss(scores_to_nms= scores_to_nms, ious_2d_for_nms= ious_2d_for_nms, fg_index_for_nms= fg_index_for_nms, num_boxes_for_nms= num_boxes_for_nms, loss_to_use= loss_to_use, scoring_method= scoring_method, sorting_method= sorting_method, temperature= temperature, sorting_temperature= sorting_temperature, cuda_testing= True, fg_index_gt_all_cases= fg_index_gt_all_cases, group_boxes = group_boxes)
# group_boxes = True
for loss_to_use in losses_to_use:
testing_with_loss(scores_to_nms= scores_to_nms, ious_2d_for_nms= ious_2d_for_nms, fg_index_for_nms= fg_index_for_nms, num_boxes_for_nms= num_boxes_for_nms, loss_to_use= loss_to_use, scoring_method= scoring_method, sorting_method= sorting_method, temperature= temperature, sorting_temperature= sorting_temperature, cuda_testing= True, fg_index_gt_all_cases= fg_index_gt_all_cases, group_boxes = group_boxes, groups_in_loss= groups_in_loss)
#==============================================================
# Group testing for 3 boxes
#==============================================================
print("\n======================== Group Testing for 3 objects ======================")
fg_index_gt_all_cases = np.zeros((2, 3))
fg_index_gt_all_cases[0] = np.array([3, special_box[0]+1, special_box[1]+1])
fg_index_gt_all_cases[1] = np.array([0, special_box[0] , special_box[1] ])
data = np.random.uniform(low=0.8, high=1, size=(num_boxes_for_nms, num_boxes_for_nms ))
data[:special_box[0], special_box[0]:] = 0
data[special_box[0]:, :special_box[0]] = 0
data[special_box[0]:special_box[1], special_box[1]:] = 0
data[special_box[1]:, special_box[0]:special_box[1]] = 0
np.fill_diagonal(data, 1)
data = 0.5*(data.transpose(1, 0) + data)
data = data.tolist()
ious_2d_for_nms = torch.Tensor(data).float()
if cuda_testing:
ious_2d_for_nms = ious_2d_for_nms.cuda()
ious_2d_for_nms.requires_grad= True
for loss_to_use in losses_to_use:
testing_with_loss(scores_to_nms= scores_to_nms, ious_2d_for_nms= ious_2d_for_nms, fg_index_for_nms= fg_index_for_nms, num_boxes_for_nms= num_boxes_for_nms, loss_to_use= loss_to_use, scoring_method= scoring_method, sorting_method= sorting_method, temperature= temperature, sorting_temperature= sorting_temperature, cuda_testing= True, fg_index_gt_all_cases= fg_index_gt_all_cases, group_boxes = group_boxes, groups_in_loss= groups_in_loss)