-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathclassify.py
36 lines (25 loc) · 1.1 KB
/
classify.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
import numpy as np
import tensorflow as tf
from tensorflow.keras import datasets, layers, models, regularizers
from tensorflow.keras.preprocessing.image import ImageDataGenerator
import cv2
import matplotlib.pyplot as plt
def load_model():
model= models.Sequential()
model.add(layers.Conv2D(32,(3,3), padding='same',input_shape=(300,300,3),activation='relu'))
model.add(layers.MaxPooling2D(pool_size=2))
model.add(layers.Conv2D(64,(3,3), padding='same',activation='relu'))
model.add(layers.MaxPooling2D(pool_size=2))
model.add(layers.Conv2D(32,(3,3), padding='same',activation='relu'))
model.add(layers.MaxPooling2D(pool_size=2))
model.add(layers.Flatten())
model.add(layers.Dense(64,activation='relu'))
model.add(layers.Dense(6,activation='softmax'))
model.load_weights('./trained_model.h5')
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['acc'])
return model
def predict(model, image_arr):
labels = {0: 'cardboard', 1: 'glass', 2: 'metal', 3: 'paper', 4: 'plastic', 5: 'trash'}
preds = model.predict(image_arr)
index = np.argmax(preds[0])
return labels[index]