-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathimdb.py
49 lines (36 loc) · 1.39 KB
/
imdb.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
from keras.datasets import imdb
from keras import models,layers
import numpy as np
(train_data,train_labels),(test_data,test_labels) = imdb.load_data(num_words = 10000)
# decoding algorithm
word_index = imdb.get_word_index()
reverse_word_index = dict([(value, key) for (key, value) in word_index.items()])
decoded_review = ' '.join([reverse_word_index.get(i - 3, '?') for i in train_data[0]])
print(decoded_review)
def vectorize_sequences(sequences,dimension = 10000):
results = np.zeros((len(sequences),dimension))
for i,sequence in enumerate(sequences):
results[i,sequence] = 1
return results
x_train = vectorize_sequences(train_data)
x_test = vectorize_sequences(test_data)
y_train = np.asarray(train_labels).astype('float32')
y_test = np.asarray(test_labels).astype('float32')
model = models.Sequential()
model.add(layers.Dense(16, activation='relu', input_shape=(10000,)))
model.add(layers.Dense(16, activation='relu'))
model.add(layers.Dense(1, activation='sigmoid'))
model.compile(optimizer='rmsprop',loss='binary_crossentropy',metrics=['accuracy'])
# x_val = x_train[:10000]
# partial_x_train = x_train[10000:]
# y_val = y_train[:10000]
# partial_y_train = y_train[10000:]
model.fit(x_train,y_train,epochs=5,batch_size=512)
results = model.evaluate(x_test,y_test)
prediction = model.predict(x_test)
print(results)
for i in prediction:
if(i > 0.5):
print("positive")
else:
print("negative")