Skip to content

Latest commit

 

History

History
109 lines (81 loc) · 2.42 KB

readme.md

File metadata and controls

109 lines (81 loc) · 2.42 KB

IRIS

Overview

IRIS(Intent Revelation and Interaction System) is a browser-based research system that explores intelligent workflow automation through the Belief-Desire-Intention (BDI) model. It aims to facilitate seamless collaboration between users and AI systems by understanding and processing implicit user intentions through a novel approach to intent revelation and interaction.

Core Features

Content Collection

  • Smart text selection and preservation
  • Webpage screenshot functionality
  • Contextual information capture
  • User annotation support

Intent Processing

  • Implicit intent extraction
  • Hierarchical intent clustering
  • Tree-based intent visualization
  • Real-time intent updates

Smart Interaction

  • Side panel quick access
  • Floating tool window
  • Content highlighting
  • Cross-page content association

Technical Architecture

Frontend (Chrome Extension)

  • Content Scripts
  • Background Service
  • Popup Interface
  • Side Panel
  • Network Visualization

Backend (FastAPI)

  • Vector Embedding Service
  • Intent Clustering Analysis
  • RAG (Retrieval-Augmented Generation)
  • API Services

System Requirements

Frontend Dependencies

  • Chrome Browser
  • Node.js environment

Backend Dependencies

  • Python 3.8+
  • FastAPI
  • OpenAI API key
  • Required Python packages (see requirements.txt)

Quick Start

1. Clone the repository

git clone https://github.com/jiaqi-xiao/MagicPocket.git

2. Setup Backend Environment

cd Back

# Create conda environment from freeze.yml
conda env create -f freeze.yml

# Activate the environment
conda activate HCIX

# Start the backend server
uvicorn main:app --reload --port 8000

3. Setup Frontend (Chrome Extension)

  1. Open Chrome extensions page

    • Navigate to chrome://extensions/
    • Enable "Developer mode" in the top right
  2. Load the extension

    • Click "Load unpacked"
    • Select the Front directory from the project

4. Configure the Extension

  1. Open extension options
  2. Set up required API keys
  3. Configure any additional settings

Development Setup

Backend Requirements

  • Anaconda or Miniconda
  • Python 3.10
  • FastAPI
  • OpenAI API key
  • Other dependencies as specified in freeze.yml

Frontend Requirements

  • Chrome Browser
  • Node.js (for development)

Future Work

  • Advanced intent extraction algorithms
  • Enhanced visualization techniques

License

This project is licensed under the MIT License