-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathconfig.py
137 lines (131 loc) · 5.84 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
# ===========================================================================
# Project: On the Byzantine-Resilience of Distillation-Based Federated Learning - IOL Lab @ ZIB
# Paper: arxiv.org/abs/2402.12265
# File: config.py
# Description: Datasets, Normalization and Transforms
# ===========================================================================
import torch
import torchvision
from torchvision import transforms
means = {
'cifar10': (0.4914, 0.4822, 0.4465),
'cifar100': (0.5071, 0.4867, 0.4408),
'imagenet': (0.485, 0.456, 0.406),
'imagenet100': (0.485, 0.456, 0.406),
'tinyimagenet': (0.485, 0.456, 0.406),
'cinic10': (0.47889522, 0.47227842, 0.43047404),
'clothing1m': (0.6959, 0.6537, 0.6371), # from https://github.com/puar-playground/LRA-diffusion/blob/main/utils/cloth_data_utils.py#L11
}
stds = {
'cifar10': (0.2023, 0.1994, 0.2010),
'cifar100': (0.2675, 0.2565, 0.2761),
'imagenet': (0.229, 0.224, 0.225),
'imagenet100': (0.229, 0.224, 0.225),
'tinyimagenet': (0.229, 0.224, 0.225),
'cinic10': (0.24205776, 0.23828046, 0.25874835),
'clothing1m': (0.3113, 0.3192, 0.3214),
}
n_classesDict = {
'mnist': 10,
'cifar10': 10,
'cifar100': 100,
'imagenet': 1000,
'imagenet100': 100,
'tinyimagenet': 200,
'cinic10': 10,
'clothing1m': 14
}
num_workersDict = {
'mnist': 2 if torch.cuda.is_available() else 0,
'cifar10': 2 if torch.cuda.is_available() else 0,
'cifar100': 4 * torch.cuda.device_count() if torch.cuda.is_available() else 0,
'imagenet': 4 * torch.cuda.device_count() if torch.cuda.is_available() else 0,
'imagenet100': 4 * torch.cuda.device_count() if torch.cuda.is_available() else 0,
'tinyimagenet': 4 * torch.cuda.device_count() if torch.cuda.is_available() else 0,
'cinic10': 2 if torch.cuda.is_available() else 0,
'clothing1m': 4 if torch.cuda.is_available() else 0,
}
datasetDict = { # Links dataset names to actual torch datasets
'mnist': getattr(torchvision.datasets, 'MNIST'),
'cifar10': getattr(torchvision.datasets, 'CIFAR10'),
'fashionMNIST': getattr(torchvision.datasets, 'FashionMNIST'),
'SVHN': getattr(torchvision.datasets, 'SVHN'), # This needs scipy
'STL10': getattr(torchvision.datasets, 'STL10'),
'cifar100': getattr(torchvision.datasets, 'CIFAR100'),
'imagenet': getattr(torchvision.datasets, 'ImageNet'),
'imagenet100': getattr(torchvision.datasets, 'ImageFolder'),
'tinyimagenet': getattr(torchvision.datasets, 'ImageFolder'),
'cinic10': getattr(torchvision.datasets, 'ImageFolder'),
'clothing1m': getattr(torchvision.datasets, 'ImageFolder'),
}
trainTransformDict = { # Links dataset names to train dataset transformers
'mnist': transforms.Compose([transforms.ToTensor()]),
'cifar10': transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(mean=means['cifar10'], std=stds['cifar10']), ]),
'cifar100': transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.RandomRotation(15),
transforms.ToTensor(),
transforms.Normalize(mean=means['cifar100'], std=stds['cifar100']), ]),
'imagenet': transforms.Compose([
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(mean=means['imagenet'], std=stds['imagenet']), ]),
'imagenet100': transforms.Compose([
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(mean=means['imagenet'], std=stds['imagenet']), ]),
'tinyimagenet': transforms.Compose([
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(mean=means['tinyimagenet'], std=stds['tinyimagenet']), ]),
'cinic10': transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(mean=means['cinic10'], std=stds['cinic10']), ]),
'clothing1m': transforms.Compose([
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(mean=means['clothing1m'], std=stds['clothing1m']), ]),
}
testTransformDict = { # Links dataset names to test dataset transformers
'mnist': transforms.Compose([transforms.ToTensor()]),
'cifar10': transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=means['cifar10'], std=stds['cifar10']), ]),
'cifar100': transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=means['cifar100'], std=stds['cifar100']), ]),
'imagenet': transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean=means['imagenet'], std=stds['imagenet']), ]),
'imagenet100': transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean=means['imagenet'], std=stds['imagenet']), ]),
'tinyimagenet': transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean=means['tinyimagenet'], std=stds['tinyimagenet']), ]),
'cinic10': transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=means['cinic10'], std=stds['cinic10']), ]),
'clothing1m': transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean=means['clothing1m'], std=stds['clothing1m']), ]),
}