-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtm.py
142 lines (116 loc) · 5.17 KB
/
tm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
import cv2
from matplotlib import pyplot as plt
import numpy as np
import math
P = 60
def _debug_print(img):
plt.imshow(img, cmap = 'gray', interpolation = 'bicubic')
plt.xticks([]), plt.yticks([]) # to hide tick values on X and Y axis
plt.show()
def exhaustive_search(test, reference):
refx = reference.shape[0]
refy = reference.shape[1]
test = cv2.cvtColor(test, cv2.COLOR_BGR2GRAY)
reference = cv2.cvtColor(reference, cv2.COLOR_BGR2GRAY)
ref_padded = np.pad(reference, ((0, test.shape[0] - refx), (0, test.shape[1] - refy)),\
'constant', constant_values=((0,0),(0,0)))
c = np.real(np.fft.ifft2((np.conj(np.fft.fft2(ref_padded))*np.fft.fft2(test))/\
np.absolute(np.conj(np.fft.fft2(ref_padded))*np.fft.fft2(test))))
#print(test, reference)
temp = np.unravel_index(np.argmax(c, axis=None), c.shape)
#print(temp)
return int(temp[0] + refx/2), int(temp[1] + refy/2)
def exhaustive_search2(test, reference):
refx = reference.shape[0]
refy = reference.shape[1]
test = cv2.cvtColor(test, cv2.COLOR_BGR2GRAY)
reference = cv2.cvtColor(reference, cv2.COLOR_BGR2GRAY)
c = np.zeros((test.shape[0] - refx + 1, test.shape[1] - refy + 1))
for i in range(test.shape[0] - refx + 1):
for j in range(test.shape[1] - refy + 1):
c[i,j] = np.sum(reference.astype(int) * test[i:i+refx, j:j+refy].astype(int))/\
(np.linalg.norm(reference) * np.linalg.norm(test[i:i+refx, j:j+refy]))
#print(test, reference)
temp = np.unravel_index(np.argmax(c, axis=None), c.shape)
return int(temp[0] + refx/2), int(temp[1] + refy/2)
def hierarchical_search(frame, ref):
if ref.shape[0] <= 8 or ref.shape[1] <= 8:
return exhaustive_search2(frame, ref)
new_frame = cv2.pyrDown(frame)
new_ref = cv2.pyrDown(ref)
#print(frame.shape, ref.shape, new_frame.shape, new_ref.shape)
x, y = hierarchical_search(new_frame, new_ref)
#print(x, y)
best = -math.inf
for i in range(2 * x - 1, 2 * x + 2):
for j in range(2 * y - 1, 2 * y + 2):
ii = i - int(ref.shape[0] / 2)
jj = j - int(ref.shape[1] / 2)
if ii >= 0 and jj >= 0 and ii + ref.shape[0] <= frame.shape[0]\
and jj + ref.shape[1] <= frame.shape[1]:
temp = np.sum(ref.astype(int) * frame[ii:ii+ref.shape[0], jj:jj+ref.shape[1]].astype(int))/\
(np.linalg.norm(ref) * np.linalg.norm(frame[ii:ii+ref.shape[0], jj:jj+ref.shape[1]]))
if temp > best:
best = temp
argbest = i, j
return argbest[0], argbest[1]
def logarithmic_search(frame, ref):
l = int(frame.shape[1]/4)
x, y = int(frame.shape[0]/2), int(frame.shape[1]/2)
best = -math.inf
while(True):
for i in range(-1, 2):
for j in range(-1, 2):
#print('p1 ',x+i*l, y+j*l)
ii = x + i * l - int(ref.shape[0] / 2)
jj = y + j * l - int(ref.shape[1] / 2)
if ii >= 0 and jj >= 0 and ii + ref.shape[0] <= frame.shape[0]\
and jj + ref.shape[1] <= frame.shape[1]:
#print(ii,jj)
temp = np.sum(ref.astype(int) * frame[ii:ii+ref.shape[0], jj:jj+ref.shape[1]].astype(int))/\
(np.linalg.norm(ref) * np.linalg.norm(frame[ii:ii+ref.shape[0], jj:jj+ref.shape[1]]))
if temp > best:
best = temp
argbest = i, j
x, y = x + argbest[0] * l, y + argbest[1] * l
l = int(l / 2)
if l < 1: break
return x + argbest[0] * l * 2, y + argbest[1] * l * 2
def search(frame, ref, x, y, p, method):
threshold = lambda x : 0 if x < 0 else x
xt, yt = method(frame[threshold(x - p): threshold(x + p), threshold(y - p): threshold(y + p)], ref)
return threshold(x - p) + xt, threshold(y - p) + yt
'''
test = cv2.imread('test.jpg')
ref = cv2.imread('ref.jpg')
print(exhaustive_search(test, ref))
x, y = logarithmic_search(test, ref)
print(x, y)
frame = cv2.rectangle(test,(int(y - ref.shape[1]/2), int(x - ref.shape[0]/2)), \
(int(y + ref.shape[1]/2), int(x + ref.shape[0]/2)), (0, 0, 255), 3)
_debug_print(frame)
'''
cap = cv2.VideoCapture('movie.mov')
ref = cv2.imread('reference.jpg')
out = cv2.VideoWriter('output.mov', cv2.VideoWriter_fourcc(*'XVID'), cap.get(cv2.CAP_PROP_FPS),\
(int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)),int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))))
if (cap.isOpened()== False):
print("Error opening video stream or file")
exit(0)
ret, frame = cap.read()
while not ret: ret, frame = cap.read()
x, y = exhaustive_search(frame, ref)
num = 1
while cap.isOpened():
ret, frame = cap.read()
if ret == True:
x, y = search(frame, ref, x, y, P, logarithmic_search)
num+=1
frame = cv2.rectangle(frame,(int(y - ref.shape[1]/2), int(x - ref.shape[0]/2)), \
(int(y + ref.shape[1]/2), int(x + ref.shape[0]/2)), (0, 0, 255), 3)
#_debug_print(frame)
out.write(frame)
#break
else: break
cap.release()
out.release()