-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
184 lines (151 loc) · 6.63 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
import os
import argparse
from tqdm import tqdm
import torch
from torch import Tensor
from torch import optim
from torch.nn import Module
from torch.utils.data import DataLoader
from utils import utils
from models import models
def get_args() -> argparse.Namespace:
parser = argparse.ArgumentParser(description='Argument Help')
parser.add_argument('--mode', type=str, default='INFERENCE', choices=('INFERENCE', 'TRAIN'))
parser.add_argument('--ff_dims', type=int, default=[28*28, 100, 10], nargs='+')
parser.add_argument('--bp_dims', type=int, default=[28*28, 100, 10], nargs='+')
parser.add_argument('--epoch', type=int, default=10)
parser.add_argument('--train_batch_size', type=int, default=16)
parser.add_argument('--test_batch_size', type=int, default=256)
parser.add_argument('--optimizer', type=str, default='SGD', choices=('SGD', 'ADAM'))
parser.add_argument('--lr', type=float, default=0.1)
parser.add_argument('--device', type=str, default='CUDA', choices=('CPU', 'CUDA'))
parser.add_argument('--seed', type=int, default=23)
return parser.parse_args()
def seed_everything(seed: int) -> None:
# random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = True
def print_set_info(args: argparse.Namespace) -> None:
print('\n\n')
print(f'SETTING INFO'.center(60, '='))
print(f'+ Mode: {args.mode}({args.device})')
print(f'+ Epoch: {args.epoch}', end='\n\n')
print(f'+ Optimizer: {args.optimizer}(lr={args.lr:.3f})', end='\n\n')
print(f'+ Batch size\n\t* Train: {args.train_batch_size}\n\t* Test: {args.test_batch_size}', end='\n\n')
print(f'+ Model shape\n\t* FF-Model: {args.ff_dims}\n\t* BP-Model: {args.bp_dims}', end='\n\n')
def get_optim(args: argparse.Namespace) -> optim:
if args.optimizer == 'SGD':
return optim.SGD
return optim.Adam
def load_model(model: Module, path: str) -> bool:
if os.path.isfile(path):
print(f'\tload model from {path}...')
model.load_state_dict(torch.load(path))
return True
print(f'\tno model in {path}...')
return False
def get_neg_y(y: Tensor, class_num: int=10) -> Tensor:
'''
return random label 'negative y', except real label
+ input shape: (Batch, )
+ output shape: (Batch, )
'''
device = y.device
batch_size = y.size(0)
able_idxs = torch.arange(class_num).unsqueeze(0).repeat(batch_size, 1).to(device)
able_idxs = able_idxs[able_idxs != y.view(batch_size, 1)].view(batch_size, class_num-1)
rand_idxs = torch.randint(class_num - 1, size=(batch_size, ))
return able_idxs[range(batch_size), rand_idxs]
def train(ff_model: Module, bp_model: Module, dataLoader: DataLoader, device: str) -> None:
dataset_size = dataLoader.__len__()
ff_model.train()
bp_model.train()
loaderIter = iter(dataLoader)
tqdm_loader = tqdm(zip(loaderIter, loaderIter), total=dataset_size//2, desc='Train')
for (x0, y0), (x1, y1) in tqdm_loader:
#x0, y0 is for positive data
#x1, y1 is for negative data
x0, y0 = x0.to(device), y0.to(device)
x1, y1 = x1.to(device), y1.to(device)
bp_model.update(x0, y0)
bp_model.update(x1, y1)
ff_model.update(
pos_x=x0, pos_y=y0, #positive data
neg_x=x1, neg_y=get_neg_y(y1), #negative data
)
def inference(ff_model: Module, bp_model: Module, dataLoader: DataLoader, device: str) -> tuple[float, float]:
get_mean = lambda x: sum(x) / len(x)
ff_acces, bp_acces = list(), list()
ff_model.eval()
bp_model.eval()
tqdm_loader = tqdm(dataLoader)
with torch.no_grad():
for x, y in tqdm_loader:
x, y = x.to(device), y.to(device)
ff_y_hat = ff_model.inference(x).argmax(dim=1)
bp_y_hat = bp_model.inference(x).argmax(dim=1)
ff_acc = ff_y_hat.eq(y).float().tolist()
bp_acc = bp_y_hat.eq(y).float().tolist()
ff_acces.extend(ff_acc)
bp_acces.extend(bp_acc)
tqdm_loader.set_description(f'ff ACC({get_mean(ff_acces):.3f}), bp ACC({get_mean(bp_acces):.3f})')
return get_mean(ff_acces), get_mean(bp_acces)
if __name__ == '__main__':
MODEL_HOME = './trained_model'
FF_PATH = os.path.join(MODEL_HOME, 'ff_model.pk')
BP_PATH = os.path.join(MODEL_HOME, 'bp_model.pk')
FIGURE_HOME = './figures'
args = get_args()
DEVICE = args.device.lower()
seed_everything(args.seed)
print_set_info(args)
ff_model = models.FFModel(dims=args.ff_dims, optimizer=get_optim(args), lr=args.lr, device=DEVICE)
bp_model = models.BPModel(dims=args.bp_dims, optimizer=get_optim(args), lr=args.lr, device=DEVICE)
print(f'+ Load Model')
if not os.path.isdir(MODEL_HOME):
os.makedirs(MODEL_HOME)
load_model(ff_model, FF_PATH)
load_model(bp_model, BP_PATH)
print(f'=' * 60)
ff_acc, bp_acc = None, None
if args.mode == 'TRAIN':
ff_acces, bp_acces = list(), list()
print('\n\n')
print(f'TRAIN MODEL'.center(60, '='))
for _ in range(args.epoch):
train_dataLoader = utils.mnistDataLoader(train=True, batch_size=args.train_batch_size)
train(ff_model, bp_model, train_dataLoader, device=DEVICE)
test_dataLoader = utils.mnistDataLoader(train=False, batch_size=args.test_batch_size)
ff_acc, bp_acc = inference(ff_model, bp_model, test_dataLoader, device=DEVICE)
ff_acces.append(ff_acc)
bp_acces.append(bp_acc)
print('')
print('=' * 60)
#save figure of accuracy
utils.save_plot(
ff_acces, bp_acces, figure_path=os.path.join(FIGURE_HOME, 'figure1_accuracy_on_testset.png')
)
#save model
print('\n\n')
print('Save Model'.center(60, '='))
torch.save(ff_model.state_dict(), FF_PATH)
torch.save(bp_model.state_dict(), BP_PATH)
print(f'\tFF Model: {FF_PATH}')
print(f'\tBP Model: {BP_PATH}')
print('=' * 60)
elif args.mode == 'INFERENCE':
print('\n\n')
print(f'INFERENCE'.center(60, '='))
test_dataLoader = utils.mnistDataLoader(train=False, batch_size=args.test_batch_size)
ff_acc, bp_acc = inference(ff_model, bp_model, test_dataLoader, device=DEVICE)
print('=' * 60)
#Common code of Train & Inference
print('\n\n')
print(f'INFERENCE RESULT'.center(60, '='))
print(f'+ Accuracy on MNIST Test Set')
print(f'\tFF Model: {ff_acc:.3f}')
print(f'\tBP Model: {bp_acc:.3f}')
print('=' * 60)